Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(26,6) oraz B=(-14,-26) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu 8x-1y+4=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=-x-\sqrt{10} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{1}{2}x-1 B. f(x)=x+4
C. f(x)=-\frac{1}{2}x-6-\frac{1}{2}x D. f(x)=-\frac{3}{2}x+4
Zadanie 4.  1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach y=-\frac{1}{a}x+7 oraz y=(3a-6)x-4 są prostopadłe.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10204 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-1,4) jest środkiem okręgu, do którego należy punkt P=(-1,-6). Okrąg ten ma równanie x^2+y^2+ax+by+c=0.

Podaj wartości parametrów a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-1,5).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-5 oraz m+x+2y-10=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest prosta k o równaniu -5x+9y-7=0 oraz punkt P=(1,3). Wyznacz równanie prostej l równoległej do prostej k i przechodzącej przez punkt P. Zapisz równanie prostej l w postaci kierunkowej y=a_1x+b_1.

Podaj b_1.

Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(10,-1) i B=(-2,-17) należą do okręgu, którego środek należy do prostej y=x-13.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt A=(6,1) jest wierzchołkiem trójkąta ABC, w którym dwie wysokości zawierają się w prostych o równaniach 9x-6y+27=0 i -11x-4y-5=0. Wyznacz równanie y=ax+b boku BC tego trójkąta.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wysokości trójkąta ABC o wierzchołkach A=(-2,-5) i B=(6,-9) przecinaja się w punkcie O=(5,-5). Wyznacz C=(x_C,y_C).

Podaj x_C.

Odpowiedź:
x_C= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj y_C.
Odpowiedź:
y_C= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm