Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(2,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych A=(0,-2) i B=(8,6) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=x+2 B. y=-x+4
C. y=-x+6 D. y=-x+2
Zadanie 3.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{1}{6}x+\frac{4}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach y=\frac{p}{4}x+2 i y=8qx-8 są prostopadłe.

Oblicz iloczyn p\cdot q.

Odpowiedź:
p\cdot q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-40x+y^2-32y+655=0 B. x^2-42x+y^2-34y+729=0
C. x^2-42x+y^2-32y+695=0 D. x^2-40x+y^2-34y+645=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu \left(m+\frac{7}{2}\right)x+\left(m+\frac{15}{2}\right)y-5=0 przecina prostą o równaniu (2m+9)x-(2m+7)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest prosta k o równaniu 2x-10y-8=0 oraz punkt P=(4,2). Wyznacz równanie prostej l równoległej do prostej k i przechodzącej przez punkt P. Zapisz równanie prostej l w postaci kierunkowej y=a_1x+b_1.

Podaj b_1.

Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dany jest okrąg o równaniu o:x^2+y^2+6x-2y+6=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest punkt A=(-19,15) oraz prosta k o równaniu y=3x+8, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wysokości trójkąta ABC o wierzchołkach A=(-6,5) i B=(2,1) przecinaja się w punkcie O=(1,5). Wyznacz C=(x_C,y_C).

Podaj x_C.

Odpowiedź:
x_C= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj y_C.
Odpowiedź:
y_C= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm