Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-6,-1) jest środkiem okręgu, a odległość punktu A=(42,19) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta, do której należą punkty A=(-57,38) i B=(-29,-18) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresy funkcji y=(11-m)x-\frac{5}{3} i y=4-(m+11)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. liczbą wymierną B. równe zero
C. liczbą nieparzystą D. liczbą niewymierną
Zadanie 4.  1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Do prostej k należą punkty o współrzędnych (0,0) oraz \left(1,\frac{9}{4}\right) oraz k\perp l.

Wyznacz współczynnik kierunkowy prostej l.

Odpowiedź:
a_l=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (11,0) i (0,-11).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-2,8) i B=\left(-3,10\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest prosta k o równaniu -3x+7y-2=0 oraz punkt P=(0,3). Wyznacz równanie prostej l równoległej do prostej k i przechodzącej przez punkt P. Zapisz równanie prostej l w postaci kierunkowej y=a_1x+b_1.

Podaj b_1.

Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(2,1), B=(9,-6) i C=(10,-3) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30192 ⋅ Poprawnie: 10/72 [13%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wektor \overrightarrow{CD}=[-3,-3] wyznacza bok prostokąta ABCD, w którym C=(9,8). Wiadomo ponadto, że A\in k:y=\frac{1}{2}x+\frac{1}{2}.
Wyznacz równanie prostej AC:x+by+c=0.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Wyznacz równanie prostej BD:x+by+c=0.

Podaj b+c.

Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30260 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Punkt S=\left(\frac{22}{3},-\frac{1}{3}\right) jest środkiem ciężkości trójkąta ABC, w którym A=(1,-2) oraz \overrightarrow{AB}=[7,0]. Wyznacz środek D=(x_D,y_D) boku BC.

Podaj x_D.

Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Wyznacz równanie boku BC: y=ax+b.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj miarę stopniową kąta rozwartego tego trójkąta.
Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm