Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(3,5) i
B=(-2,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+4 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=3x-\sqrt{6} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=-3x-6
B. f(x)=\frac{7}{2}x+5-\frac{1}{2}x
C. f(x)=\frac{9}{2}x+1
D. f(x)=\frac{5}{2}x-6
Zadanie 4. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, -2\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x-1 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych
A=(-2,-1) . Punkt
P=(2,-1)
jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o
równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie.
r > 0 .
Podaj liczby a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(-4,6) i
B=(-3,7) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x-14 oraz
m+x+2y-7=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
-x-4y-2=0 i
y=\frac{m+4}{2}x-2 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okrąg
o_2 jest symetryczny do okręgu
o_1:x^2+y^2+16x+2y+40=0 względem punktu
P=(-17,0) . Wyznacz środek
S=(x_S,y_S) okręgu
o_2 .
Podaj x_S .
Odpowiedź:
x_S=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-21,12) oraz prosta
k o równaniu
y=3x+11 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» W prostokącie
ABCD dane są:
C=(-1,6) ,
\overrightarrow{AB}=[4,4] oraz prosta
y=x+1 , do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej
AC:y=cx+d .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż