Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=(6,-4) jest środkiem odcinka
AC , gdzie
A=(x_A,y_A) i
C=\left(\frac{3}{2},3\right) .
Podaj współrzędne x_A i y_A .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(-1,2) i
B=(7,10) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+7
B. y=x+9
C. y=x+7
D. y=-x+9
Zadanie 3. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-15)x i
y=(15-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą parzystą
B. liczbą niewymierną
C. liczbą nieparzystą
D. liczbą pierwszą
Zadanie 4. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, 2\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x+3 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10443 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nierówność
25x^2-40x+y^2+8y+32\leqslant 0
opisuje:
Odpowiedzi:
A. dwie przecinające się proste
B. całą płaszczyznę
C. okrąg
D. koło
E. punkt
F. zbiór pusty
Zadanie 6. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(4-2\sqrt{3},1 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(-2,-8) i
B=\left(-3,-11\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okrąg
o_2 jest symetryczny do okręgu
o_1:x^2+y^2-4x+20y+79=0 względem punktu
P=(-7,-9) . Wyznacz środek
S=(x_S,y_S) okręgu
o_2 .
Podaj x_S .
Odpowiedź:
x_S=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(8,2) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y+15=0 i
-11x-4y+21=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30264 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
W trójkącie
ABC dane są: wierzchołki
A=(7,-9) i
B=(10,-5) ,
równanie boku
BC:x+2y=0 i równanie
środkowej
AD:5x-y-44=0 .
Wysokość tego trójkąta
CE opisana jest
równaniem
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż