Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do okręgu o środku w punkcie S=(1,5) i promieniu długości \sqrt{85} należy punkt:
Odpowiedzi:
A. (-5,-5) B. (1,-2)
C. (1,0) D. (-4,-6)
E. (-1,-4) F. (-5,-8)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+1 i x-y=-9.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach k:y=7m^2x-m-4 oraz l:y=49mx+m+4 spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:x-\frac{21}{2}y-6=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(1,12) jest środkiem okręgu, a do tego okręgu należą punkty (-2,15) i (-2,9).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x-1)^2+(y-12)^2=18 B. (x+5)^2+(y-12)^2=18
C. (x+5)^2+(y-10)^2=18 D. (x-1)^2+(y-10)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(5+\sqrt{6},-1+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-4,5) i B=\left(3,-2\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-10,8), B=(3,-6) i C=(-10,8). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2-10x+12y+36=0 względem punktu P=(-4,-5). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(2,4), B=(4,10) i C=(-6,16).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30264 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 W trójkącie ABC dane są: wierzchołki A=(10,-5) i B=(13,-1), równanie boku BC:x+2y-11=0 i równanie środkowej AD:5x-y-55=0. Wysokość tego trójkąta CE opisana jest równaniem y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm