Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Punkty A=(1,1) i B=(25,33) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+9 i x-y=4.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji y=-4+(m-7)x i y=(7-m)x+\frac{1}{2} są prostopadłe.

Zatem m jest:

Odpowiedzi:
A. liczbą nieparzystą B. liczbą niewymierną
C. liczbą parzystą D. liczbą pierwszą
Zadanie 4.  1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:2x+\frac{7}{2}y+5=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (12,0) i (0,-12).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(1,3) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(4,24) i B=\left(1,9\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach 3x-3y-1=0 i y=\frac{m+4}{2}x+7 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(5,8) i B=(-7,-8) należą do okręgu, którego środek należy do prostej y=x+1.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(6,-3), B=(8,3) i C=(-2,9).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Prosta x+2y-7=0 jest osią symetrii trapezu równoramiennego ABCD o ramieniu AD, przy czym A=\left(-2,-\frac{1}{2}\right) i D=\left(-5,\frac{7}{2}\right). Wyznacz B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj y_B.
Odpowiedź:
y_B= (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Wyznacz C=(x_C,y_C).

Podaj x_C+y_C.

Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm