Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty o współrzędnych A=\left(10,-6\right) i B=\left(18,-6\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu 14x-3y+21=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=\frac{\sqrt{5}}{9}x-3 oraz g(x)=\frac{5}{9\sqrt{5}}x-\frac{1}{2}:
Odpowiedzi:
A. są prostopadłe B. pokrywają się
C. przecinają się, ale nie są prostopadłe D. są równoległe i nie pokrywają się
Zadanie 4.  1 pkt ⋅ Numer: pr-10105 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Do prostej k należą punkty punkty o współrzędnych A=\left(\frac{1}{4},-\frac{1}{4}\right) i B=\left(3,4\right).

Wyznacz współczynnik kierunkowy prostej prostopadłej do prostej k.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-3,11) jest środkiem okręgu, a do tego okręgu należą punkty (-6,14) i (-6,8).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+3)^2+(y-11)^2=18 B. (x+9)^2+(y-11)^2=18
C. (x+3)^2+(y-9)^2=18 D. (x+9)^2+(y-9)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(5,-3) i B=(6,-2) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-3,7) i B=(-8,4).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla której proste mx+(3-m)y+m^2=0 oraz (m+1)x+3my+6=0 są równoległe. Oblicz 100\cdot m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o:x^2+y^2+(-8-2\sqrt{3}),x+8y+26+8\sqrt{3}=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt K=(2,4) jest środkiem odcinka PQ. Wyznacz równanie prostej k prostopadłej do odcinka PQ i przechodzącej przez punkt Q, wiedząc, że P=(-4,-8). Zapisz równanie prostej k w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Prosta x+2y+5=0 jest osią symetrii trapezu równoramiennego ABCD o ramieniu AD, przy czym A=\left(4,-\frac{19}{2}\right) i D=\left(1,-\frac{11}{2}\right). Wyznacz B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj y_B.
Odpowiedź:
y_B= (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Wyznacz C=(x_C,y_C).

Podaj x_C+y_C.

Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm