Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt
P=\left(6\sqrt{11},4\right), a jej wykres jest prostą równoleglą
do prostej o równaniu y=-\sqrt{11}x-7.
Wyznacz współczynnik a.
Odpowiedź:
a=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
« Dana jest prosta k o równaniu
x-8y+4=0 oraz punkt
P=(8,3). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0
«« Punkt A=(3,-3) jest wierzchołkiem trójkąta
ABC, w którym dwie wysokości zawierają się w prostych
o równaniach 9x-6y+30=0 i
-11x-4y-54=0. Wyznacz równanie
y=ax+b boku BC tego
trójkąta.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0
«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y-\frac{7}{2}=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(2,10) i C=(-3,10) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat