Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=(-4,-5) jest środkiem okręgu, a
odległość punktu
A=(12,7) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(-1,2) i
B=(7,10) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+7
B. y=x+9
C. y=-x+9
D. y=-x+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
y=(3m-20)x+12 oraz
y=(-3m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%]
Rozwiąż
Podpunkt 4.1 (0.5 pkt)
Punkty o współrzędnych
A=(54,18) oraz
B=(18,54)
są wzajemnie symetryczne względem prostej określonej równaniem
y=ax+b .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(2,10) jest środkiem okręgu, a do tego okręgu
należą punkty
(-1,13) i
(-1,7) .
Okrąg ten ma równanie:
Odpowiedzi:
A. (x+4)^2+(y-10)^2=18
B. (x-2)^2+(y-10)^2=18
C. (x+4)^2+(y-8)^2=18
D. (x-2)^2+(y-8)^2=18
Zadanie 6. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(4-2\sqrt{3},1 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(2,6) i
B=(-7,4) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest prosta
k o równaniu
-7x+8y-5=0 oraz punkt
P=(3,1) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okrąg
o_2 jest symetryczny do okręgu
o_1:x^2+y^2-6x+22y+105=0 względem punktu
P=(-6,-10) . Wyznacz środek
S=(x_S,y_S) okręgu
o_2 .
Podaj x_S .
Odpowiedź:
x_S=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(2,3) ,
B=(4,9) i
C=(-6,15) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Podstawy
AB i
CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y+6=0 , do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(9,-3) i
C=(4,-3) wyznacz
współrzędne pozostałych wierzchołków
A=(x_A,y_A) i
D=(x_D,y_D) .
Podaj najmniejsze możliwe y_A .
Odpowiedź:
y_{A_{min}}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
y_A .
Odpowiedź:
y_{A_{max}}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Odpowiedź:
x_D+y_D=
(wpisz liczbę całkowitą)
Rozwiąż