Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty
A=(-2,1) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(-5,-3)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prostą
k o równaniu
y=-2x+1 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-x-\frac{2}{5}y-3=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Okrąg o równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie
r > 0 , jest styczny do osi układu w punktach
o współrzędnych
(5,0) i
(0,-5) .
Podaj wartości parametrów a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-2,1) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
\left(m-\frac{3}{2}\right)x+\left(m+\frac{5}{2}\right)y-5=0
przecina prostą o równaniu
(2m-1)x-(2m-3)y-20=0 w punkcie
P=(x_0,0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
-2x-3y-2=0 i
y=\frac{m+4}{2}x+4 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dany jest okrąg o równaniu
o:x^2+y^2+2x+14y+46=0 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_s,y_s) tego okręgu.
Podaj x_s+y_s .
Odpowiedź:
x_s+y_s=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(6,-1) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y+15=0 i
-11x-4y-13=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» W prostokącie
ABCD dane są:
C=(3,1) ,
\overrightarrow{AB}=[4,4] oraz prosta
y=x-8 , do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej
AC:y=cx+d .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż