Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-3,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+9 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=-x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10106 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta przechodząca przez punkty A=(1,-3) i B=(3m-1,-3m) jest prostopadła do prostej 2x-3y+3=0.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta określona wzorem y=m jest styczną do okręgu o równaniu (x+3)^2+(y+1)^2=169

Podaj najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-1,8) i B=(0,9) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+13)y+2m+21=0 przecina prostą (2m+13)x+y-m-\frac{15}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(-2,-29).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(6,9) i B=(-6,-7) należą do okręgu, którego środek należy do prostej y=x+1.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt A=(4,-3) jest wierzchołkiem trójkąta ABC, w którym dwie wysokości zawierają się w prostych o równaniach 9x-6y+21=0 i -11x-4y-43=0. Wyznacz równanie y=ax+b boku BC tego trójkąta.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » W prostokącie ABCD dane są: C=(1,9), \overrightarrow{AB}=[4,4] oraz prosta y=x+2, do której należy wierzchołek A tego prostokąta. Wyznacz równanie przekątnej AC:y=cx+d.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj d.
Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm