Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty o współrzędnych K=(3,-8) oraz L=(-9,-5) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{4}{3}x-\frac{2}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach y=(-4-m)x-5 oraz y=-\frac{1}{3}x+\frac{7}{2} są prostopadłe.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Z koła opisanego nierównością x^2-4x+y^2+10y+25\leqslant 0 wycięto kąt środkowy tego koła o mierze 30^{\circ}. Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-3,-8) i B=\left(-1,-6\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(-8,-11).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o:x^2+y^2+(8-2\sqrt{3}),x+8y+26-8\sqrt{3}=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30192 ⋅ Poprawnie: 10/72 [13%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wektor \overrightarrow{CD}=[-3,-3] wyznacza bok prostokąta ABCD, w którym C=(5,-1). Wiadomo ponadto, że A\in k:y=\frac{1}{2}x-\frac{13}{2}.
Wyznacz równanie prostej AC:x+by+c=0.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Wyznacz równanie prostej BD:x+by+c=0.

Podaj b+c.

Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Punkty A=(-3,-1), B=(5,-9) i C=(9,-3) są wierzchołkami trójkata.

Wyznacz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Wyznacz równanie y=ax+b prostej AD.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Wyznacz współrzędne (x_s,y_s) środka ciężkości trójkąta ABC

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
y_s=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm