Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do okręgu o środku w punkcie S=(-5,-2) i promieniu długości 3\sqrt{5} należy punkt:
Odpowiedzi:
A. (-1,-2) B. (1,-1)
C. (-1,0) D. (4,4)
E. (1,1) F. (-2,-3)
Zadanie 2.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Środek odcinka o końcach (-4,-9) i (-2,-9) należy do prostej o równaniu y+ax=-5-5a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresy funkcji y=(11-m)x-\frac{5}{3} i y=4-(m+11)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. liczbą nieparzystą B. liczbą niewymierną
C. równe zero D. liczbą wymierną
Zadanie 4.  1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prostą prostopadłą do wykresu funkcji y=x+3 jest prosta określona równaniem y=ax+1

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10444 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 9x^2+30x+y^2+12y+62\leqslant 0 opisuje:
Odpowiedzi:
A. zbiór pusty B. całą płaszczyznę
C. koło D. okrąg
E. dwie przecinające się proste F. punkt
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(1,4).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(1,3) i B=(-7,-8).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla której proste mx+(3-m)y+m^2=0 oraz (m+1)x+3my+6=0 są równoległe. Oblicz 100\cdot m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(9,0) i B=(-3,-16) należą do okręgu, którego środek należy do prostej y=x-11.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(-3,-6), B=(-1,0) i C=(-11,6).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wysokości trójkąta ABC o wierzchołkach A=(-3,-4) i B=(5,-8) przecinaja się w punkcie O=(4,-4). Wyznacz C=(x_C,y_C).

Podaj x_C.

Odpowiedź:
x_C= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj y_C.
Odpowiedź:
y_C= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm