Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=\left(-\frac{15}{4},4\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(1,-2) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Symetralną odcinka o końcach
A=(-3,6) i
B=\left(\frac{5}{2},6\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
k:y=7m^2x-m-4 oraz
l:y=49mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-2x+\frac{19}{2}y-2=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Okrąg o równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie
r > 0 , jest styczny do osi układu w punktach
o współrzędnych
(3,0) i
(0,-3) .
Podaj wartości parametrów a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(4,4) i
B=(5,5) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
\left(m-\frac{9}{2}\right)x+\left(m-\frac{1}{2}\right)y-5=0
przecina prostą o równaniu
(2m-7)x-(2m-9)y-20=0 w punkcie
P=(x_0,0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest funkcja liniowa
f(x)=2x-11 .
Wyznacz wzór funkcji liniowej
g(x)=ax+b ,
której wykres jest równoległy do wykresu funkcji
f
i do której należy punkt
M=(7,-22) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Środki wszystkich okręgów o równaniu
x^2-(m+4)x+y^2+m+3=0 należą do prostej
k .
Jaki kąt tworzy prosta k z osią
Ox .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz tę wartość parametru
m , dla której okrąg ten
jest styczny do prostej
4-x=0 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(-2,3) ,
B=(0,9) i
C=(-10,15) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wysokości trójkąta
ABC o wierzchołkach
A=(-1,1) i
B=(7,-3)
przecinaja się w punkcie
O=(6,1) . Wyznacz
C=(x_C,y_C) .
Podaj x_C .
Odpowiedź:
x_C=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_C=
(wpisz liczbę całkowitą)
Rozwiąż