Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(2,5) i
B=(-1,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(0,-2) i
B=(8,6) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=x+2
B. y=-x+4
C. y=-x+6
D. y=-x+2
Zadanie 3. 1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«Proste określone równaniami
y=mx+n i
-\frac{1}{6}x+\frac{4}{3}y+4=0
są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
y=\frac{p}{4}x+2 i
y=8qx-8 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty (22,17) , (20,15) i
(20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-40x+y^2-32y+655=0
B. x^2-42x+y^2-34y+729=0
C. x^2-42x+y^2-32y+695=0
D. x^2-40x+y^2-34y+645=0
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
\left(m+\frac{7}{2}\right)x+\left(m+\frac{15}{2}\right)y-5=0
przecina prostą o równaniu
(2m+9)x-(2m+7)y-20=0 w punkcie
P=(x_0,0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest prosta
k o równaniu
2x-10y-8=0 oraz punkt
P=(4,2) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dany jest okrąg o równaniu
o:x^2+y^2+6x-2y+6=0 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_s,y_s) tego okręgu.
Podaj x_s+y_s .
Odpowiedź:
x_s+y_s=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-19,15) oraz prosta
k o równaniu
y=3x+8 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wysokości trójkąta
ABC o wierzchołkach
A=(-6,5) i
B=(2,1)
przecinaja się w punkcie
O=(1,5) . Wyznacz
C=(x_C,y_C) .
Podaj x_C .
Odpowiedź:
x_C=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_C=
(wpisz liczbę całkowitą)
Rozwiąż