«« Punkt A=(12,-7) jest wierzchołkiem trójkąta
ABC, w którym dwie wysokości zawierają się w prostych
o równaniach 9x-6y-75=0 i
-11x-4y+29=0. Wyznacz równanie
y=ax+b boku BC tego
trójkąta.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0
Odcinek AB jest podstawą trójkąta równoramiennego
ABC, w którym:
\overrightarrow{AB}=[-4,-6],
C=(-7,7) i
\overrightarrow{CD}=[-6,4], gdzie
D jest spodkiem wysokości opuszczonej z wierzchołka
C tego trójkąta. Wyznacz równanie boku
BC:x+b_1y+c_1=0.
Podaj b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj c_1.
Odpowiedź:
c_1=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku AB:x+b_2y+c_2=0.
Podaj b_2.
Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat