Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty A=(-5,6) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(-3,9) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu 12x-5y+30=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(4,\frac{3}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta o równaniu y=\frac{6}{m+2}x+4 jest prostopadła do prostej o równaniu y=-\frac{3}{2}x+3.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-9,5). Punkt P=(-5,5) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(7,-3) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-5,6) i B=(-3,8).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla której proste mx+(3-m)y+m^2=0 oraz (m+1)x+3my+6=0 są równoległe. Oblicz 100\cdot m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(2,-1) i przechodzi przez punkt A=(8,5).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(-2,3), B=(0,9) i C=(-10,15).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Odcinek AB jest podstawą trójkąta równoramiennego ABC, w którym: \overrightarrow{AB}=[-4,-6], C=(-2,0) i \overrightarrow{CD}=[-6,4], gdzie D jest spodkiem wysokości opuszczonej z wierzchołka C tego trójkąta. Wyznacz równanie boku BC:x+b_1y+c_1=0.

Podaj b_1.

Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj c_1.
Odpowiedź:
c_1= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz równanie boku AB:x+b_2y+c_2=0.

Podaj b_2.

Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm