Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(8,4), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(10,5) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Środek odcinka o końcach (-3,3) i (-1,3) należy do prostej o równaniu y+ax=7-4a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=-5x-\sqrt{8} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=-\frac{9}{2}x-4-\frac{1}{2}x B. f(x)=-\frac{11}{2}x+1
C. f(x)=-\frac{7}{2}x+2 D. f(x)=5x+6
Zadanie 4.  1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem y=\frac{1}{2}x-5 prostopadły jest wykres funkcji określonej wzorem y=ax-\frac{1}{5}.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-42x+y^2-32y+695=0 B. x^2-40x+y^2-34y+645=0
C. x^2-42x+y^2-34y+729=0 D. x^2-40x+y^2-32y+655=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(8,1) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+17)y+2m+25=0 przecina prostą (2m+17)x+y-m-\frac{19}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-1,-10), B=(7,-3) i C=(-1,0). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2+4x+18y+60=0 względem punktu P=(-11,-8). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkty K=(0,3) oraz L są środkami boków odpowiednio AC i BC trójkata ABC. Wiadomo, że \overrightarrow{AK}=[1,6] oraz \overrightarrow{KL}=[8,4]. Wyznacz równanie boku AB tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Punkty A=(-7,8), B=(1,0) i C=(5,6) są wierzchołkami trójkata.

Wyznacz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Wyznacz równanie y=ax+b prostej AD.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Wyznacz współrzędne (x_s,y_s) środka ciężkości trójkąta ABC

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
y_s=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm