» Punkt K=(0,4) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-6,-8).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0
« Prosta x+2y+7=0 jest osią symetrii trapezu
równoramiennego ABCD o ramieniu
AD, przy czym A=\left(2,-\frac{19}{2}\right)
i D=\left(-1,-\frac{11}{2}\right).
Wyznacz B=(x_B,y_B).
Podaj x_B.
Odpowiedź:
x_B=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj y_B.
Odpowiedź:
y_B=(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Wyznacz C=(x_C,y_C).
Podaj x_C+y_C.
Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat