Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty
A=(1,-7) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(-2,-2)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta, do której należą punkty
A=(52,-34) i
B=(36,-50)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{3}x-\frac{23}{3} przecina
pod kątem prostym w punkcie
K=(-1,-8) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(4,-\frac{7}{4}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10443 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nierówność
9x^2+30x+y^2+4y+29\leqslant 0
opisuje:
Odpowiedzi:
A. punkt
B. dwie przecinające się proste
C. całą płaszczyznę
D. okrąg
E. zbiór pusty
F. koło
Zadanie 6. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(-5,1) i
B=(-4,2) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
\left(m-\frac{11}{2}\right)x+\left(m-\frac{3}{2}\right)y-5=0
przecina prostą o równaniu
(2m-9)x-(2m-11)y-20=0 w punkcie
P=(x_0,0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
-x-4y-5=0 i
y=\frac{m+4}{2}x-2 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Środki wszystkich okręgów o równaniu
x^2-(m-5)x+y^2+m-6=0 należą do prostej
k .
Jaki kąt tworzy prosta k z osią
Ox .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz tę wartość parametru
m , dla której okrąg ten
jest styczny do prostej
4-x=0 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(3,3) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y+66=0 i
-11x-4y-30=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wysokości trójkąta
ABC o wierzchołkach
A=(-9,-1) i
B=(-1,-5)
przecinaja się w punkcie
O=(-2,-1) . Wyznacz
C=(x_C,y_C) .
Podaj x_C .
Odpowiedź:
x_C=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_C=
(wpisz liczbę całkowitą)
Rozwiąż