Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(9,9) jest punkt
C=(6,6) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Proste o równaniach
\sqrt{3}x-y+1=0 i
-3y+5=0 :
Odpowiedzi:
A. są równoległe
B. przecinają się pod kątem 60^{\circ}
C. przecinają się pod kątem 30^{\circ}
D. przecinają się pod kątem 45^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-11)x i
y=(11-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą pierwszą
C. liczbą niewymierną
D. liczbą parzystą
Zadanie 4. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do prostej o równaniu
x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10218 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(7,5) jest środkiem okręgu, a do tego okręgu
należy punkt o współrzędnych
(4,1) . Okrąg ten opisany jest
równaniem
(x-a)^2+(y-b)^2=r^2 , gdzie
r > 0 .
Podaj liczby a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(1+\sqrt{6},3+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 156/383 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(3,-5) i
B=\left(-4,16\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
2x-y-2=0 i
y=\frac{m+4}{2}x-3 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o:x^2+y^2+(-2-2\sqrt{3}),x-8y+11+2\sqrt{3}=0 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_s,y_s) tego okręgu.
Podaj x_s+y_s .
Odpowiedź:
x_s+y_s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(5,0) ,
B=(7,6) i
C=(-3,12) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Punkty
A=(0,4) ,
B=(8,-4) i
C=(12,2)
są wierzchołkami trójkata.
Wyznacz długość środkowej AD tego trójkąta.
Odpowiedź:
|AD|=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Wyznacz równanie
y=ax+b prostej
AD .
Podaj b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Wyznacz współrzędne
(x_s,y_s) środka ciężkości
trójkąta
ABC
Podaj x_s .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż