Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-7,-2) jest środkiem okręgu, a odległość punktu A=(5,33) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Symetralną odcinka o końcach A=(8,4) i B=\left(-\frac{5}{2},4\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Prosta równoległa do prostej o równaniu y=3x+\frac{1}{2} i zawiera punkt P=\left(3\sqrt{2},-5+4\sqrt{2}\right) i określona jest ma równaniem y=ax+b.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem y=\frac{1}{5}x-1 prostopadły jest wykres funkcji określonej wzorem y=ax-1.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta określona wzorem y=m jest styczną do okręgu o równaniu (x-3)^2+(y-5)^2=49

Podaj najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(0,3) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu \left(m+\frac{9}{2}\right)x+\left(m+\frac{17}{2}\right)y-5=0 przecina prostą o równaniu (2m+11)x-(2m+9)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach x+3y-4=0 i y=\frac{m+4}{2}x-4 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2-8x+10y+16=0 względem punktu P=(-5,-4). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Punkty A=(7,0) i B=(0,28) należą do wykresu funkcji liniowej f(x)=(3m-2k)x+2k+m

Podaj k+m.

Odpowiedź:
k+m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Napisz równanie proporcjonalności prostej, której wykres jest równoległy do wykresu funkcji f.

Podaj współczynnik tej proporcjonalności.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz miejsce zerowe funkcji g(x)=f(2x+1)-3.
Odpowiedź:
g(x)=0\iff x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Odcinek AB jest podstawą trójkąta równoramiennego ABC, w którym: \overrightarrow{AB}=[-4,-6], C=(-9,6) i \overrightarrow{CD}=[-6,4], gdzie D jest spodkiem wysokości opuszczonej z wierzchołka C tego trójkąta. Wyznacz równanie boku BC:x+b_1y+c_1=0.

Podaj b_1.

Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj c_1.
Odpowiedź:
c_1= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz równanie boku AB:x+b_2y+c_2=0.

Podaj b_2.

Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm