Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty
A=(-7,5) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(4,6)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(0,2) i
B=(8,10) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=x+10
B. y=-x+6
C. y=-x+10
D. y=x+6
Zadanie 3. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y=-\frac{1}{3}x+\frac{17}{3} przecina
pod kątem prostym w punkcie
K=(5,4) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10105 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Do prostej
k należą punkty punkty
o współrzędnych
A=\left(-\frac{1}{4},-\frac{1}{3}\right) i
B=\left(-4,3\right) .
Wyznacz współczynnik kierunkowy prostej prostopadłej do prostej k .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-6,9) jest środkiem okręgu, a do tego okręgu
należą punkty
(-9,12) i
(-9,6) .
Okrąg ten ma równanie:
Odpowiedzi:
A. (x+6)^2+(y-7)^2=18
B. (x+12)^2+(y-7)^2=18
C. (x+12)^2+(y-9)^2=18
D. (x+6)^2+(y-9)^2=18
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(6,-7) i
B=(-4,5) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
-4x+2y-2=0 i
y=\frac{m+4}{2}x+5 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Środki wszystkich okręgów o równaniu
x^2-(m+4)x+y^2+m+3=0 należą do prostej
k .
Jaki kąt tworzy prosta k z osią
Ox .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz tę wartość parametru
m , dla której okrąg ten
jest styczny do prostej
4-x=0 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(1,11) jest środkiem odcinka
PQ . Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q , wiedząc, że
P=(-5,-1) .
Zapisz równanie prostej
k w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30264 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
W trójkącie
ABC dane są: wierzchołki
A=(7,1) i
B=(10,5) ,
równanie boku
BC:x+2y-20=0 i równanie
środkowej
AD:5x-y-34=0 .
Wysokość tego trójkąta
CE opisana jest
równaniem
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż