Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11226  
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(1,2) jest punkt C=(-5,-4).

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11236  
Podpunkt 2.1 (1 pkt)
 Proste o równaniach x-y+4=0 i -3y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są równoległe
C. przecinają się pod kątem 30^{\circ} D. są prostopadłe
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10847  
Podpunkt 3.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=-6x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11536  
Podpunkt 4.1 (0.5 pkt)
 Punkty o współrzędnych A=(42,14) oraz B=(14,42) są wzajemnie symetryczne względem prostej określonej równaniem y=ax+b.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10211  
Podpunkt 5.1 (1 pkt)
 Oblicz pole kwadratu wpisanego w okrąg o równaniu x^2+y^2+2x+12y=63.
Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20592  
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20587  
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-5 oraz m+x+2y-10=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20315  
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach -2x-5y-2=0 i y=\frac{m+4}{2}x-4 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20384  
Podpunkt 9.1 (1 pkt)
 Punkty A=(-4,7), B=(3,0) i C=(4,3) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30192  
Podpunkt 10.1 (2 pkt)
 « Wektor \overrightarrow{CD}=[-3,-3] wyznacza bok prostokąta ABCD, w którym C=(2,-2). Wiadomo ponadto, że A\in k:y=\frac{1}{2}x-6.
Wyznacz równanie prostej AC:x+by+c=0.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Wyznacz równanie prostej BD:x+by+c=0.

Podaj b+c.

Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30266  
Podpunkt 11.1 (2 pkt)
 «« Podstawy AB i CD trapezu równoramiennego są prostopadłe do prostej k:\frac{1}{2}x+y+2=0, do której należy wierzchołek D tego trapezu. Wiedząc, że B=(-5,8) i C=(-10,8) wyznacz współrzędne pozostałych wierzchołków A=(x_A,y_A) i D=(x_D,y_D).

Podaj najmniejsze możliwe y_A.

Odpowiedź:
y_{A_{min}}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm