Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(6,-6) i F=(-5,-5) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
« Z koła opisanego nierównością
x^2-12x+y^2+12y+68\leqslant 0
wycięto kąt środkowy tego koła o mierze 4^{\circ}.
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(11,-2). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x-\frac{21}{2}.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0
«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y+12=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(-5,-2) i C=(-10,-2) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat