Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11220  
Podpunkt 1.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(4,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11251  
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=6x-1 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10824  
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji y=-4+(m-11)x i y=(11-m)x+\frac{1}{2} są prostopadłe.

Zatem m jest:

Odpowiedzi:
A. liczbą nieparzystą B. liczbą niewymierną
C. liczbą pierwszą D. liczbą parzystą
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11536  
Podpunkt 4.1 (0.5 pkt)
 Punkty o współrzędnych A=(66,22) oraz B=(22,66) są wzajemnie symetryczne względem prostej określonej równaniem y=ax+b.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10304  
Podpunkt 5.1 (1 pkt)
 Oblicz długość promienia okręgu o równaniu x^2+y^2-6y-112=0.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20590  
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(-1+\sqrt{6},5+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20588  
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(5,19) i B=\left(2,7\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20314  
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(-1,-30).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20385  
Podpunkt 9.1 (1 pkt)
 « Punkty A=(6,9) i B=(-6,-7) należą do okręgu, którego środek należy do prostej y=x+1.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30189  
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(5,-2), B=(7,4) i C=(-3,10).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30262  
Podpunkt 11.1 (1 pkt)
 Odcinek AB jest podstawą trójkąta równoramiennego ABC, w którym: \overrightarrow{AB}=[-4,-6], C=(-7,7) i \overrightarrow{CD}=[-6,4], gdzie D jest spodkiem wysokości opuszczonej z wierzchołka C tego trójkąta. Wyznacz równanie boku BC:x+b_1y+c_1=0.

Podaj b_1.

Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj c_1.
Odpowiedź:
c_1= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz równanie boku AB:x+b_2y+c_2=0.

Podaj b_2.

Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm