« Dana jest prosta k o równaniu
-9x+3y-1=0 oraz punkt
P=(-10,1). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(10,14). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x+6.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0
Odcinek AB jest podstawą trójkąta równoramiennego
ABC, w którym:
\overrightarrow{AB}=[-4,-6],
C=(-1,1) i
\overrightarrow{CD}=[-6,4], gdzie
D jest spodkiem wysokości opuszczonej z wierzchołka
C tego trójkąta. Wyznacz równanie boku
BC:x+b_1y+c_1=0.
Podaj b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj c_1.
Odpowiedź:
c_1=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku AB:x+b_2y+c_2=0.
Podaj b_2.
Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat