Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(-1,-3).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta, do której należą punkty A=(-23,-27) i B=(2,-2) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=-x-\sqrt{10} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=-\frac{3}{2}x-4 B. f(x)=x-5
C. f(x)=\frac{1}{2}x+4 D. f(x)=-\frac{1}{2}x-6-\frac{1}{2}x
Zadanie 4.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=3}x-1 i y=-3x+1 B. y=\frac{1}{6}x-4 i y=-6x-8
C. y=8}x-2 i y=8x+2 D. y=\frac{1}{6}x-7 i y=6x-14
Zadanie 5.  1 pkt ⋅ Numer: pr-10304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz długość promienia okręgu o równaniu x^2+y^2-6y-27=0.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-2,2) i B=(-1,3) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-7,-7) i B=(5,-5).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla której proste mx+(3-m)y+m^2=0 oraz (m+1)x+3my+6=0 są równoległe. Oblicz 100\cdot m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Środki wszystkich okręgów o równaniu x^2-(m-2)x+y^2+m-3=0 należą do prostej k.

Jaki kąt tworzy prosta k z osią Ox.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz tę wartość parametru m, dla której okrąg ten jest styczny do prostej 4-x=0.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt K=(0,4) jest środkiem odcinka PQ. Wyznacz równanie prostej k prostopadłej do odcinka PQ i przechodzącej przez punkt Q, wiedząc, że P=(-6,-8). Zapisz równanie prostej k w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Prosta x+2y+7=0 jest osią symetrii trapezu równoramiennego ABCD o ramieniu AD, przy czym A=\left(2,-\frac{19}{2}\right) i D=\left(-1,-\frac{11}{2}\right). Wyznacz B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj y_B.
Odpowiedź:
y_B= (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Wyznacz C=(x_C,y_C).

Podaj x_C+y_C.

Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm