« Dana jest prosta k o równaniu
-3x+7y-2=0 oraz punkt
P=(0,3). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(9,8). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x+\frac{1}{2}.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30260 ⋅ Poprawnie: 0/0
«« Punkt S=\left(\frac{22}{3},-\frac{1}{3}\right) jest środkiem ciężkości
trójkąta ABC, w którym
A=(1,-2) oraz
\overrightarrow{AB}=[7,0]. Wyznacz środek
D=(x_D,y_D) boku BC.
Podaj x_D.
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku BC: y=ax+b.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj miarę stopniową kąta rozwartego tego trójkąta.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat