Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty o współrzędnych A=\left(6,6\right) i B=\left(14,6\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=-7x+1 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(3,\frac{5}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) Jedna z przekątnych rombu zawiera się w prostej o równaniu y=-\frac{5}{6}x+1.

Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10211 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole kwadratu wpisanego w okrąg o równaniu x^2+y^2-6x-12y=76.
Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(6,4) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-7,1) i B=(8,4).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-1,-5), B=(-10,-10) i C=(-6,-10). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(1,6) i przechodzi przez punkt A=(7,12).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest punkt A=(-15,15) oraz prosta k o równaniu y=3x-4, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Podstawy AB i CD trapezu równoramiennego są prostopadłe do prostej k:\frac{1}{2}x+y-\frac{13}{2}=0, do której należy wierzchołek D tego trapezu. Wiedząc, że B=(4,12) i C=(-1,12) wyznacz współrzędne pozostałych wierzchołków A=(x_A,y_A) i D=(x_D,y_D).

Podaj najmniejsze możliwe y_A.

Odpowiedź:
y_{A_{min}}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm