Punkt A=(-10,-10) jest środkiem okręgu o promieniu
2020. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
« Dana jest prosta k o równaniu
7x+y+10=0 oraz punkt
P=(9,2). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0
«« Punkt A=(-2,-2) jest wierzchołkiem trójkąta
ABC, w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1].
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
» W prostokącie ABCD dane są:
C=(-1,3),
\overrightarrow{AB}=[4,4] oraz prosta
y=x-2, do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej AC:y=cx+d.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj d.
Odpowiedź:
d=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat