Punkt A=(-13,8) jest środkiem okręgu o promieniu
2017. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
» Prosta o równaniu
\left(m-\frac{13}{2}\right)x+\left(m-\frac{5}{2}\right)y-5=0
przecina prostą o równaniu
(2m-11)x-(2m-13)y-20=0 w punkcie
P=(x_0,0).
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
« Dana jest prosta k o równaniu
-6x+9y+3=0 oraz punkt
P=(2,2). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
» Punkt K=(1,4) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-5,-8).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0
«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y+\frac{15}{2}=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(8,-4) i C=(3,-4) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat