Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Punkty A=(2,-3) i B=(8,5) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Proste o równaniach x-y+5=0 i -5y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są prostopadłe
C. przecinają się pod kątem 30^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste określone równaniami y=-\frac{3}{5}x-2 i (3m+4)x+2y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach y=(2-m)x-5 oraz y=\frac{1}{3}x+4 są prostopadłe.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 25x^2+10x+y^2+8y-64\leqslant 0 opisuje:
Odpowiedzi:
A. punkt B. dwie przecinające się proste
C. zbiór pusty D. całą płaszczyznę
E. koło F. okrąg
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-2,-7).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+5)y+2m+13=0 przecina prostą (2m+5)x+y-m-\frac{7}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(7,-2), B=(-10,1) i C=(0,1). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dany jest okrąg o równaniu o:x^2+y^2+12x-2y+33=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(0,-5), B=(2,1) i C=(-8,7).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30264 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 W trójkącie ABC dane są: wierzchołki A=(-4,5) i B=(-1,9), równanie boku BC:x+2y-17=0 i równanie środkowej AD:5x-y+25=0. Wysokość tego trójkąta CE opisana jest równaniem y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm