Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(5,-5) i
C=(3,-1) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{5}\pi
B. \frac{\sqrt{5}}{2}\pi
C. 4\sqrt{5}\pi
D. 2\sqrt{5}\pi
E. 2\sqrt{10}\pi
F. 3\sqrt{5}\pi
Zadanie 2. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+3 i
x-y=8 .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-11)x i
y=(11-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą parzystą
B. liczbą pierwszą
C. liczbą niewymierną
D. liczbą nieparzystą
Zadanie 4. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-x+\frac{11}{2}y-6=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Z koła opisanego nierównością
x^2-6x+y^2+2y-15\leqslant 0
wycięto kąt środkowy tego koła o mierze
15^{\circ} .
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-4+\sqrt{6},-1+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m+13)y+2m+21=0 przecina prostą
(2m+13)x+y-m-\frac{15}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Punkty
A=(-3,4) ,
B=(4,-3) i
C=(5,0)
należą do okręgu.
Podaj promień tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_S,y_S) tego okręgu.
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-22,9) oraz prosta
k o równaniu
y=3x+11 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» W prostokącie
ABCD dane są:
C=(-2,3) ,
\overrightarrow{AB}=[4,4] oraz prosta
y=x-1 , do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej
AC:y=cx+d .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż