» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
« Z koła opisanego nierównością
x^2+12x+y^2-10y+57\leqslant 0
wycięto kąt środkowy tego koła o mierze 90^{\circ}.
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y+\frac{9}{2}=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(10,-2) i C=(5,-2) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat