Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(2,3) , do którego
należy punkt o współrzędnych
A=(-5,-4) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prostą
k o równaniu
y=-8x+7 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
y=(4m-20)x+12 oraz
y=(3m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do prostej o równaniu
7x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty o współrzędnych
A=(-5,6) ,
B=(0,6) ,
C=(3,10) i
D=(-2,10) są
wierzchołkami rombu.
Okrąg wpisany w ten romb ma równanie:
Odpowiedzi:
A. (x+1)^2+(y-8)^2=4
B. (x+1)^2+(y-8)^2=2
C. (x+9)^2+(y-4)^2=4
D. (x+9)^2+(y-4)^2=2
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m+21)y+2m+29=0 przecina prostą
(2m+21)x+y-m-\frac{23}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest funkcja liniowa
f(x)=2x-11 .
Wyznacz wzór funkcji liniowej
g(x)=ax+b ,
której wykres jest równoległy do wykresu funkcji
f
i do której należy punkt
M=(9,-26) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Okrąg
o:x^2+y^2+ax+by+c=0 ma środek
w punkcie
S=(3,4) i przechodzi przez
punkt
A=(9,10) .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Punkty
A=(19,0) i
B=(0,19)
należą do wykresu funkcji liniowej
f(x)=(3m-2k)x+2k+m
Podaj k+m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Napisz równanie proporcjonalności prostej, której wykres jest równoległy
do wykresu funkcji
f .
Podaj współczynnik tej proporcjonalności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz miejsce zerowe funkcji
g(x)=f(2x+1)-3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wysokości trójkąta
ABC o wierzchołkach
A=(0,3) i
B=(8,-1)
przecinaja się w punkcie
O=(7,3) . Wyznacz
C=(x_C,y_C) .
Podaj x_C .
Odpowiedź:
x_C=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_C=
(wpisz liczbę całkowitą)
Rozwiąż