Punkt S=(-4,8) jest środkiem okręgu, a do tego okręgu
należy punkt o współrzędnych (-7,4). Okrąg ten opisany jest
równaniem (x-a)^2+(y-b)^2=r^2, gdzie
r > 0.
Podaj liczby a, b i
r.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
r
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
» Prosta o równaniu
\left(m-\frac{13}{2}\right)x+\left(m-\frac{5}{2}\right)y-5=0
przecina prostą o równaniu
(2m-11)x-(2m-13)y-20=0 w punkcie
P=(x_0,0).
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
« Dane są punkty o współrzędnych A=(8,-5),
B=(5,9) i C=(-7,6).
Prosta k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB. Wyznacz równanie prostej
k.
Podaj m+n.
Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(-1,10). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x+\frac{15}{2}.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0
Odcinek AB jest podstawą trójkąta równoramiennego
ABC, w którym:
\overrightarrow{AB}=[-4,-6],
C=(-10,-1) i
\overrightarrow{CD}=[-6,4], gdzie
D jest spodkiem wysokości opuszczonej z wierzchołka
C tego trójkąta. Wyznacz równanie boku
BC:x+b_1y+c_1=0.
Podaj b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj c_1.
Odpowiedź:
c_1=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku AB:x+b_2y+c_2=0.
Podaj b_2.
Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat