Podgląd testu : lo2@sp-15-geom-analit-1-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do okręgu o środku w punkcie
S=(5,-4) i promieniu długości
5\sqrt{2} należy punkt:
Odpowiedzi:
A. (-3,-1)
B. (0,-1)
C. (-2,-3)
D. (-1,-2)
E. (-4,-5)
F. (0,-2)
Zadanie 2. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta, do której należą punkty
A=(22,56) i
B=(-12,-46)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
k:y=4m^2x-m-4 oraz
l:y=16mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x-1 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty o współrzędnych
A=(9,-2) ,
B=(14,-2) ,
C=(17,2) i
D=(12,2) są
wierzchołkami rombu.
Okrąg wpisany w ten romb ma równanie:
Odpowiedzi:
A. (x-13)^2+(y)^2=4
B. (x-13)^2+(y)^2=2
C. (x-5)^2+(y+4)^2=2
D. (x-5)^2+(y+4)^2=4
Zadanie 6. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(6,4) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x+10 oraz
m+x+2y-15=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
2x-y-1=0 i
y=\frac{m+4}{2}x+4 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okrąg
o_2 jest symetryczny do okręgu
o_1:x^2+y^2+8x-2y-8=0 względem punktu
P=(-13,2) . Wyznacz środek
S=(x_S,y_S) okręgu
o_2 .
Podaj x_S .
Odpowiedź:
x_S=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-15,15) oraz prosta
k o równaniu
y=3x-4 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Odcinek
AB jest podstawą trójkąta równoramiennego
ABC , w którym:
\overrightarrow{AB}=[-4,-6] ,
C=(-3,7) i
\overrightarrow{CD}=[-6,4] , gdzie
D jest spodkiem wysokości opuszczonej z wierzchołka
C tego trójkąta. Wyznacz równanie boku
BC:x+b_1y+c_1=0 .
Podaj b_1 .
Odpowiedź:
b_1=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
c_1=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku
AB:x+b_2y+c_2=0 .
Podaj b_2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż