« Punkt o współrzędnych oraz punkty A=(0,0),
B i C są wierzchołkami trójkąta równoramiennego
o podstawie AB, a punkt
D=(2,1) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka C.
Wówczas punkt B ma współrzędne B=(x_B, y_B).
Wyznacz współrzędne x_B i y_B.
Odpowiedzi:
x_B
=
(wpisz liczbę całkowitą)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
» Punkt K=(-3,5) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-9,-7).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0
« Prosta x+2y+8=0 jest osią symetrii trapezu
równoramiennego ABCD o ramieniu
AD, przy czym A=\left(-1,-\frac{17}{2}\right)
i D=\left(-4,-\frac{9}{2}\right).
Wyznacz B=(x_B,y_B).
Podaj x_B.
Odpowiedź:
x_B=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj y_B.
Odpowiedź:
y_B=(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Wyznacz C=(x_C,y_C).
Podaj x_C+y_C.
Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat