Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(-3,-1) i F=(1,-4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
« Dane są punkty o współrzędnych A=(-5,5),
B=(5,4) i C=(1,-1).
Prosta k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB. Wyznacz równanie prostej
k.
Podaj m+n.
Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0
» Punkt K=(0,7) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-6,-5).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0
Odcinek AB jest podstawą trójkąta równoramiennego
ABC, w którym:
\overrightarrow{AB}=[-4,-6],
C=(-4,0) i
\overrightarrow{CD}=[-6,4], gdzie
D jest spodkiem wysokości opuszczonej z wierzchołka
C tego trójkąta. Wyznacz równanie boku
BC:x+b_1y+c_1=0.
Podaj b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj c_1.
Odpowiedź:
c_1=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku AB:x+b_2y+c_2=0.
Podaj b_2.
Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat