Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 8 cm2 i 36 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 16:81, mogą być równe:
Odpowiedzi:
A. 27:8 B. 4:\frac{81}{4}
C. 9:\frac{16}{9} D. 4:\frac{16}{9}
Zadanie 3.  1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 81\pi, a łuk tego wycinka ma długość \frac{5}{6}\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 10. Kąt środkowy koła \alpha oparty jest na łuku o długości 7\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 3:5.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 8\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Bok rombu ma długość 7, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{3}}{4}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątne równoległoboku mają długość 4 i 10, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 10 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 64 jest równe 64. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm