Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:17. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 2 i \frac{289}{6}
|
B. 12 i \frac{289}{3}
|
|
C. 2 i \frac{17}{3}
|
D. 1 i \frac{17}{3}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
49:121, mogą być równe:
Odpowiedzi:
|
A. 7:\frac{121}{7}
|
B. 7:\frac{49}{11}
|
|
C. 33:14
|
D. 14:\frac{147}{11}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
92\pi, a łuk tego wycinka ma długość
\frac{13}{2}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
5:\pi, a średnica tego koła ma długość
14.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
3:5.
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=4,
|BC|=14
oraz
\sin\sphericalangle ABC=\frac{3\sqrt{5}}{7}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Przyprostokątna trójkąta o długości
10 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Przekątne równoległoboku o długości
13
i
\frac{7}{10} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
50.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
20, a jego wysokość długość
24.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)