Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
3:15. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 4 i 20
|
B. 12 i 300
|
C. 1 i 20
|
D. 4 i 75
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{5}{2}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 47/117 [40%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Promień koła ma długość
9, a kąt wycinka tego koła ma miarę
145^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
17:\pi, a średnica tego koła ma długość
4.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
28:100.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 401/593 [67%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=6,
|BC|=10
oraz
\sin\sphericalangle ABC=\frac{4}{5}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/454 [56%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Przyprostokątna trójkąta o długości
4 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Przekątne równoległoboku o długości
6
i
\frac{3}{11} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
2 i
przecinają się pod kątem o mierze
60^{\circ}.
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
96, a jego wysokość długość
20.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)