Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 2:7. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{35}{2} B. 5 i \frac{35}{2}
C. 10 i \frac{245}{2} D. 5 i \frac{49}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:16, mogą być równe:
Odpowiedzi:
A. 3:\frac{9}{4} B. 12:6
C. 6:\frac{27}{4} D. 4:\frac{9}{4}
Zadanie 3.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Promień koła ma długość 8, a kąt wycinka tego koła ma miarę 188^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 27. Kąt środkowy koła \alpha oparty jest na łuku o długości 24\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 3:5.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 402/594 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=10 oraz \sin\sphericalangle ABC=\frac{\sqrt{19}}{10}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątne równoległoboku mają długość 2 i 20, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 6. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 96, a jego wysokość długość 20.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm