Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
7 cm
2 i
81 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{12}{7}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Promień koła ma długość
2, a kąt wycinka tego koła ma miarę
70^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
18. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
4\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
13:85.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
8 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Bok rombu ma długość
7, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{2}}{4}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Przekątne równoległoboku o długości
11
i
\frac{7}{12} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
2 i
przecinają się pod kątem o mierze
60^{\circ}.
Odpowiedź:
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
24 jest równe
9. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
|
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|