Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:15. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 18 i \frac{225}{2}
|
B. 3 i \frac{75}{2}
|
|
C. 3 i \frac{15}{2}
|
D. 1 i \frac{15}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
9:16, mogą być równe:
Odpowiedzi:
|
A. 12:6
|
B. 3:\frac{9}{4}
|
|
C. 6:\frac{27}{4}
|
D. 4:\frac{9}{4}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
102\pi, a łuk tego wycinka ma długość
\frac{11}{5}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
6. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
2\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
20:52.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
56 i kącie rozwartym
150^{\circ}.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Przyprostokątna trójkąta o długości
11 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Przekątne równoległoboku mają długość
2 i
6,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
42.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
80 jest równe
100. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
|
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|