Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10587  
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 10 cm2 i 150 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10515  
Podpunkt 2.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 49:100, mogą być równe:
Odpowiedzi:
A. 7:\frac{100}{7} B. 7:\frac{49}{10}
C. 14:\frac{147}{10} D. 30:14
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11598  
Podpunkt 3.1 (1 pkt)
 Promień koła ma długość 5, a kąt wycinka tego koła ma miarę 188^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11601  
Podpunkt 4.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 10:\pi, a średnica tego koła ma długość 10.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11699  
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 27:45.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10669  
Podpunkt 6.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=12 oraz \sin\sphericalangle ABC=\frac{\sqrt{7}}{4}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10654  
Podpunkt 7.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{7}{13} i 6 oraz kącie ostrym o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10673  
Podpunkt 8.1 (1 pkt)
 » Przekątne równoległoboku o długości 7 i \frac{13}{6} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11512  
Podpunkt 9.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 16 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10679  
Podpunkt 10.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 80 jest równe 100. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm