Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10587  
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 2 cm2 i 250 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10591  
Podpunkt 2.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{13}{3}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11598  
Podpunkt 3.1 (1 pkt)
 Promień koła ma długość 5, a kąt wycinka tego koła ma miarę 18^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11601  
Podpunkt 4.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 23:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11602  
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 16:65.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10647  
Podpunkt 6.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 9\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10654  
Podpunkt 7.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{3}{7} i 3 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10656  
Podpunkt 8.1 (1 pkt)
 « Przekątne równoległoboku mają długość 2 i 10, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11512  
Podpunkt 9.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 4 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10679  
Podpunkt 10.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 72 jest równe 81. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm