Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10586  
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 5:14. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{42}{5} B. 3 i \frac{196}{5}
C. 3 i \frac{42}{5} D. 15 i \frac{588}{5}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10591  
Podpunkt 2.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{13}{5}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11599  
Podpunkt 3.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 87\pi, a łuk tego wycinka ma długość \frac{9}{5}\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11601  
Podpunkt 4.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 9:\pi, a średnica tego koła ma długość 6.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11602  
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 12:37.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10678  
Podpunkt 6.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 46 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10654  
Podpunkt 7.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{8}{5} i 12 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10656  
Podpunkt 8.1 (1 pkt)
 « Przekątne równoległoboku mają długość 6 i 8, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10667  
Podpunkt 9.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 36. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10679  
Podpunkt 10.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 64 jest równe 64. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm