Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:15 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{75}{4}
B. 5 i \frac{75}{4}
C. 5 i \frac{225}{4}
D. 20 i \frac{1125}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30 . Kąt środkowy koła
\alpha
oparty jest na łuku o długości
14\pi :
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
6 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
6 i
16 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
26 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
210 ,
a tangens jednego z kątów ostrych tego trójkąta jest równy
\frac{35}{12} .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
6 , a promień
okręgu wpisanego w ten trójkąt ma długość
1 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trapezie
ABCD ,
AB\parallel CD , poprowadzono przekątne,
które przecięły się w punkcie
E . Pola powierzchni trójkątów
ABE i
BCE są równe odpowiednio
15 i
10 .
Oblicz pole powierzchni trójkąta CDE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=2\sqrt{7}=5.29150262212918
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20884 ⋅ Poprawnie: 94/163 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dwa boki trójkąta mają długość
14 i
7 , a
\alpha jest kątem
zawartym między nimi, przy czym
\sin\alpha=\frac{\sqrt{195}}{14} .
Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż