Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 7 cm2 i 128 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 11:61.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 14 tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 10 i \frac{8}{3} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 56 jest równe 49. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « W trójkącie prostokątnym kąt ostry spałnia warunek \cos\alpha=\frac{3}{8}, a promień okręgu opisanego na tym trójkącie ma długość \frac{20}{3}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Pole powierzchni trójkąta równoramiennego jest równe 240, a tangens kąta kąta przy podstawie jest równy \frac{12}{5}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dany jest trójkąt równoramienny o podstawie AB:

Oblicz \sin\sphericalangle DAB.

Dane
k=6
Odpowiedź:
\sin\sphericalangle DAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{P_{\triangle AES}}{P_{\triangle SDC}} .
Odpowiedź:
\frac{P_{\triangle AES}}{P_{\triangle SDC}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 22.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt D należy do podstawy AB trójkąta równoramiennego ABC i dzieli tę podstawę w stosunku |AD|:|DB|=9:1. Odcinek CDjest 10 razy dłuższy od odcinka DB.

Oblicz \cos\sphericalangle ADC.

Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm