Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{11}{2}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
79\pi, a łuk tego wycinka ma długość
\frac{1}{9}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
8\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/349 [65%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
7
i
\frac{12}{7} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
72, a jego wysokość długość
27.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Odcinki
AM i
MB
na rysunku maja równą długość, a bok
AC ma długość
6:
Wiedząc, że P_{\triangle ABC}=18\sqrt{3}, oblicz
P_{\triangle ABM}.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
3072, a cosinus
kąta przy podstawie jest równy
\frac{3}{5}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Odcinki
DE,
FG i
AB
są równoległe, a pola wielokątów
DEC,
FGED i
ABGF
pozostają w stosunku
a:b:c.
Oblicz \frac{|DE|}{|FG|}.
Dane
a=9
b=7
c=33
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=2
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=12\sqrt{2} oraz
|BC|=20:
Odpowiedź:
R=
(wpisz liczbę całkowitą)