Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:16 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 3 i 64
B. 12 i 192
C. 1 i 12
D. 3 i 12
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
7 , a kąt wycinka tego koła ma miarę
114^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
34 i kącie rozwartym
150^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
2
i
\frac{9}{10} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
40 , a jego wysokość długość
21 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
25 ,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=2 .
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
768 , a sinus kąta
kąta przy podstawie jest równy
\frac{4}{5} .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE| .
Dane
|AC|=27
P_{\triangle DBE}:P_{ADEC}=217:269=0.80669144981413
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=49\pi=153.93804002589987
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=8:1 . Odcinek
CD jest 9 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż