Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 3 cm2 i 50 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 30. Kąt środkowy koła \alpha oparty jest na łuku o długości 19\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=10 oraz \sin\sphericalangle ABC=\frac{\sqrt{19}}{10}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{3}{13} i 7 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 24 jest równe 9. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « W trójkącie prostokątnym kąt ostry spałnia warunek \cos\alpha=\frac{3}{13}, a promień okręgu opisanego na tym trójkącie ma długość \frac{65}{6}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Pole powierzchni trójkąta jest równe 6, a promień okręgu wpisanego w ten trójkąt ma długość 1.

Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość najkrótszej wysokości tego trójkąta.

Odpowiedź:
h_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trapezie ABCD, AB\parallel CD, poprowadzono przekątne, które przecięły się w punkcie E. Pola powierzchni trójkątów ABE i BCE są równe odpowiednio 51 i 39.

Oblicz pole powierzchni trójkąta CDE.

Odpowiedź:
P_{\triangle CDE}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 2 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20890 ⋅ Poprawnie: 211/342 [61%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt, w którym: \sin\alpha=\frac{3}{7}, \cos\beta=\frac{2}{7} i |BC|=12:

Oblicz |AC|.

Odpowiedź:
|AC|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm