Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
9 cm
2 i
100 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
18. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
8\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=9,
|BC|=11
oraz
\sin\sphericalangle ABC=\frac{2\sqrt{10}}{11}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
11 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
72 jest równe
81. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
|
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
4,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=\frac{1}{2}.
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20909 ⋅ Poprawnie: 3/8 [37%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie dwa boki mają długość
40, a promień okręgu opisanego
na tym trójkącie ma długość
25. Pole powierzchni tego trójkąta
jest równe
768.
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE|.
Dane
|AC|=33
P_{\triangle DBE}:P_{ADEC}=303:621=0.48792270531401
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ}.
Pole powierzchni mniejszego z kół jest równe
10.
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD, w którym
|AB|=3 i
|AD|=10, ma miarę
60^{\circ}.
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)