Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
16:121, mogą być równe:
Odpowiedzi:
|
A. 33:8
|
B. 4:\frac{16}{11}
|
|
C. 8:\frac{48}{11}
|
D. 11:\frac{16}{11}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
102\pi, a łuk tego wycinka ma długość
\frac{5}{4}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
56 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{5}{7} i
10 oraz kącie ostrym o mierze
30^{\circ}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
10 i
przecinają się pod kątem o mierze
30^{\circ}.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Odcinki
AM i
MB
na rysunku maja równą długość, a bok
AC ma długość
14:
Wiedząc, że P_{\triangle ABC}=98\sqrt{3}, oblicz
P_{\triangle ABM}.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Pole powierzchni trójkąta równoramiennego jest równe
768, a tangens kąta
kąta przy podstawie jest równy
\frac{4}{3}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE|.
Dane
|AC|=48
P_{\triangle DBE}:P_{ADEC}=208:1328=0.15662650602410
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P:
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=81\pi=254.46900494077325
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Oblicz długość środkowej trójkąta o bokach długości
6,
7 i
11, poprowadzonej do najdłuższego boku.
Odpowiedź:
(wpisz dwie liczby całkowite)