Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
4:121, mogą być równe:
Odpowiedzi:
|
A. 33:4
|
B. 2:\frac{121}{2}
|
|
C. 11:\frac{4}{11}
|
D. 2:\frac{4}{11}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
4:\pi, a średnica tego koła ma długość
4.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
7\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
8 i
16,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
|
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« W trójkącie prostokątnym kąt ostry spałnia warunek
\cos\alpha=\frac{11}{12},
a promień okręgu opisanego na tym trójkącie ma długość
10.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
60, a cosinus
kąta przy podstawie jest równy
\frac{15}{17}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD}.
Dane
|AS|=14
|SB|=7
|SC|=2
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P:
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=49\pi=153.93804002589987
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC, w którym
|AB|=8,
|AC|=5 i
\cos\alpha=\frac{4}{5}, promień okręgu opisanego
na tym trójkącie ma długość
\frac{25}{6}:
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)