Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10515  
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 25:36, mogą być równe:
Odpowiedzi:
A. 18:10 B. 5:\frac{25}{6}
C. 5:\frac{36}{5} D. 10:\frac{25}{2}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11600  
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 30. Kąt środkowy koła \alpha oparty jest na łuku o długości 27\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10678  
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 32 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10666  
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 7 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11512  
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 10 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20750  
Podpunkt 6.1 (2 pkt)
 « Punkty M i N są środkami boków trójkąta na rysunku i spełniają warunki: |AM|=8 i |BN|=14:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21029  
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 12, a pole powierzchni tego trójkąta jest równe 48.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20760  
Podpunkt 8.1 (2 pkt)
 » Trójkąt ABC jest ostrokątny i równoramienny o podstawie AB:

Oblicz P_{ABC}.

Dane
|AB|+|BC|+|AC|=400
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20918  
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 4 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20807  
Podpunkt 10.1 (2 pkt)
 «« Punkt D należy do podstawy AB trójkąta równoramiennego ABC i dzieli tę podstawę w stosunku |AD|:|DB|=8:1. Odcinek CDjest 9 razy dłuższy od odcinka DB.

Oblicz \cos\sphericalangle ADC.

Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm