Podstawą trójkąta równoramiennego ABC jest bok AB.
Środkowe AL i BK przecinają się w punkcie
S i tworzą kąt ASB o mierze
60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS
jest równe 169\sqrt{3}.
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%]
W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|,
poprowadzono wysokości CD i BE. Stosunek pól powierzchni
trójkątów ABE i ADC jest równy
P_{ABE}:P_{ADC}=\frac{100}{169}, a obwód tego trójkąta ma długość
72.
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%]
«« Punkt D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=12:1. Odcinek
CDjest 13 razy dłuższy od odcinka
DB.
Oblicz \cos\sphericalangle ADC.
Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat