Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 49:121, mogą być równe:
Odpowiedzi:
A. 7:\frac{49}{11} B. 7:\frac{121}{7}
C. 14:\frac{147}{11} D. 11:\frac{49}{11}
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 4, a kąt wycinka tego koła ma miarę 156^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=8, |BC|=14 oraz \sin\sphericalangle ABC=\frac{\sqrt{33}}{7}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 10 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 50. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Podstawą trójkąta równoramiennego ABC jest bok AB. Środkowe AL i BK przecinają się w punkcie S i tworzą kąt ASB o mierze 60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS jest równe 144\sqrt{3}.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 25 i 29, a promień okręgu opisanego na tym trójkącie ma długość \frac{145}{8}. Pole powierzcni tego trójkąta jest równe 60.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{36}{25}, a obwód tego trójkąta ma długość 64.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 10 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt D należy do podstawy AB trójkąta równoramiennego ABC i dzieli tę podstawę w stosunku |AD|:|DB|=11:1. Odcinek CDjest 12 razy dłuższy od odcinka DB.

Oblicz \cos\sphericalangle ADC.

Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm