Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:17 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 2 i \frac{289}{6}
B. 12 i \frac{289}{3}
C. 1 i \frac{17}{3}
D. 2 i \frac{17}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
7:\pi , a średnica tego koła ma długość
14 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=8 ,
|BC|=12
oraz
\sin\sphericalangle ABC=\frac{\sqrt{5}}{3} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
14 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
12 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W trójkącie prostokątnym kąt ostry spałnia warunek
\cos\alpha=\frac{3}{5} ,
a promień okręgu opisanego na tym trójkącie ma długość
\frac{25}{3} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20909 ⋅ Poprawnie: 3/8 [37%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie dwa boki mają długość
25 , a promień okręgu opisanego
na tym trójkącie ma długość
\frac{625}{14} . Pole powierzchni tego trójkąta
jest równe
168 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie ostrokątnym równoramiennym
ABC ,
|AC|=|BC| ,
poprowadzono wysokości
CD i
BE . Stosunek pól powierzchni
trójkątów
ABE i
ADC jest równy
P_{ABE}:P_{ADC}=\frac{100}{169} , a obwód tego trójkąta ma długość
36 .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
5 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym
|AB|=3\sqrt{6} ,
|BC|=3\sqrt{3} ,
|AC|=\frac{3\sqrt{6}}{2}+\frac{9\sqrt{2}}{2} i
\alpha=30^{\circ} :
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}\ [^{\circ}]=
(wpisz liczbę całkowitą)
Rozwiąż