Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
7 cm
2 i
32 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
5 , a kąt wycinka tego koła ma miarę
10^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
14 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{11}{2} i
7 oraz kącie ostrym o mierze
60^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Podstawą trójkąta równoramiennego
ABC jest bok
AB .
Środkowe
AL i
BK przecinają się w punkcie
S i tworzą kąt
ASB o mierze
60^{\circ} . Wiadomo, że pole powierzchni trójkąta
ABS
jest równe
81\sqrt{3} .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
120 , a cosinus
kąta przy podstawie jest równy
\frac{60}{61} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB :
Oblicz \sin\sphericalangle DAB .
Dane
k=5
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=8
R=24
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20884 ⋅ Poprawnie: 94/163 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dwa boki trójkąta mają długość
14 i
7 , a
\alpha jest kątem
zawartym między nimi, przy czym
\sin\alpha=\frac{\sqrt{195}}{14} .
Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż