Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 2 cm2 i 72 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 7, a kąt wycinka tego koła ma miarę 10^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 4 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/349 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 10 i \frac{5}{12} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 16 jest równe 4. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « W okrąg o obwodzie \frac{1}{4}\pi wpisano ośmiokąt foremny.

Oblicz pole powierzchni tego ośmiokąta.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 128, a tangens kąta przy podstawie jest równy \frac{3}{4}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{256}{289}, a obwód tego trójkąta ma długość 100.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=4\sqrt{2}=5.65685424949238
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC, w którym |AB|=40, |AC|=29 i \cos\alpha=\frac{20}{29}, promień okręgu opisanego na tym trójkącie ma długość \frac{841}{42}:

Oblicz sumę sinusów wszystkich kątów tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm