Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
4 cm
2 i
28 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
4, a kąt wycinka tego koła ma miarę
12^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
4, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{5}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{5}{9} i
5 oraz kącie ostrym o mierze
45^{\circ}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
16 jest równe
4. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
|
C. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 18/39 [46%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» We wnętrzu trójkąta równobocznego o boku długości
4\sqrt{2}
zaznaczono dowolny punkt.
Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
84, a promień
okręgu wpisanego w ten trójkąt ma długość
4.
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najdłuższej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=34
|AB|=32
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=3
R=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20890 ⋅ Poprawnie: 211/342 [61%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym:
\sin\alpha=\frac{2}{3},
\cos\beta=\frac{1}{3} i
|BC|=10:
Oblicz |AC|.
Odpowiedź: