Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
8 cm
2 i
24 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
84\pi , a łuk tego wycinka ma długość
4\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
44 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{7}{3} i
4 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
16 i
przecinają się pod kątem o mierze
30^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Punkty
M i
N są środkami
boków trójkąta na rysunku i spełniają warunki:
|AM|=18 i
|BN|=\frac{63}{2} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
28 i
30 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{65}{4} . Pole powierzcni
tego trójkąta jest równe
336 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB :
Oblicz \sin\sphericalangle DAB .
Dane
k=6
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l :
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=10\pi=31.41592653589793
\alpha=25^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC , w którym
|AB|=12 ,
|AC|=10 i
\cos\alpha=\frac{3}{5} , promień okręgu opisanego
na tym trójkącie ma długość
\frac{25}{4} :
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż