Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
3:14 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 4 i \frac{196}{3}
B. 12 i \frac{784}{3}
C. 1 i \frac{56}{3}
D. 4 i \frac{56}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
25\pi , a łuk tego wycinka ma długość
\frac{14}{5}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
5\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
6 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
36 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20279 ⋅ Poprawnie: 104/190 [54%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długości
\frac{2}{3} i
\frac{1}{2} , a pole powierzchni tego trójkąta jest równe
\frac{1}{9} .
Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między
tymi bokami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
48 , a pole
powierzchni tego trójkąta jest równe
768 .
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AC|:|AB|=12:35 , Punkt
D należy do
przeciwprostokątnej
BC oraz
|CD|:|DB|=8:3 .
Punkt
E należy do przyprostokątnej
AB i
ED\perp BC .
Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni
trójkąta EBD .
Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ} .
Pole powierzchni mniejszego z kół jest równe
19 .
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD , w którym
|AB|=5 i
|AD|=8 , ma miarę
30^{\circ} .
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż