Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
4 cm
2 i
225 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
27. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
3\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 402/594 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=9,
|BC|=14
oraz
\sin\sphericalangle ABC=\frac{\sqrt{115}}{14}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
5 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
48.
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{8}{9}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
192, a cosinus
kąta przy podstawie jest równy
\frac{24}{25}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Odcinki
DE,
FG i
AB
są równoległe, a pola wielokątów
DEC,
FGED i
ABGF
pozostają w stosunku
a:b:c.
Oblicz \frac{|DE|}{|FG|}.
Dane
a=1
b=15
c=33
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=6
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Oblicz długość środkowej trójkąta o bokach długości
8,
9 i
11, poprowadzonej do najdłuższego boku.
Odpowiedź:
(wpisz dwie liczby całkowite)