Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:11 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 30 i \frac{605}{6}
B. 5 i \frac{121}{6}
C. 1 i \frac{55}{6}
D. 5 i \frac{55}{6}
Zadanie 2. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
33:65 .
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
2 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
12
i
\frac{7}{2} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
8 , a jego wysokość długość
3 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20279 ⋅ Poprawnie: 104/190 [54%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długości
1 i
\frac{3}{4} , a pole powierzchni tego trójkąta jest równe
\frac{1}{4} .
Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między
tymi bokami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
112 , a cosinus
kąta przy podstawie jest równy
\frac{56}{65} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie ostrokątnym równoramiennym
ABC ,
|AC|=|BC| ,
poprowadzono wysokości
CD i
BE . Stosunek pól powierzchni
trójkątów
ABE i
ADC jest równy
P_{ABE}:P_{ADC}=\frac{256}{289} , a obwód tego trójkąta ma długość
100 .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=16\pi=50.26548245743669
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Oblicz długość środkowej trójkąta o bokach długości
11 ,
12 i
13 , poprowadzonej do najdłuższego boku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż