Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10515  
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 25:81, mogą być równe:
Odpowiedzi:
A. 9:\frac{25}{9} B. 5:\frac{25}{9}
C. 5:\frac{81}{5} D. 27:10
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11600  
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 30. Kąt środkowy koła \alpha oparty jest na łuku o długości 21\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10647  
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 7\sqrt{3} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10673  
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 13 i \frac{4}{11} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11389  
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 32, a jego wysokość długość 12.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20279  
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długości \frac{2}{3} i \frac{1}{2}, a pole powierzchni tego trójkąta jest równe \frac{1}{9}.

Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między tymi bokami.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21026  
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 768, a cosinus kąta przy podstawie jest równy \frac{3}{5}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20913  
Podpunkt 8.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=28:45, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=7:5. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20764  
Podpunkt 9.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=8
R=24
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20887  
Podpunkt 10.1 (2 pkt)
 » Oblicz długość promienia okręgu na rysunku wiedząc, że |AC|-|AB|=42\sqrt{2} oraz |BC|=70:
Odpowiedź:
R= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm