Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:14 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 2 i 49
B. 8 i 98
C. 1 i 7
D. 2 i 7
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30 . Kąt środkowy koła
\alpha
oparty jest na łuku o długości
13\pi :
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
6\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
7 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
48 jest równe
36 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
C. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Punkty
M i
N są środkami
boków trójkąta na rysunku i spełniają warunki:
|AM|=16 i
|BN|=28 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
40 , a pole
powierzchni tego trójkąta jest równe
420 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AB|:|AC|=63:16 , Punkt
D dzieli
przyprostokątną
AB na dwa odcinki takie, że
|AD|:|DB|=2:1 .
Punkt
E należy do przeciwprostokątnej
BC i
DE\perp BC .
Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni
trójkąta DBE . Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=7
R=21
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC , w którym
|AB|=32 ,
|AC|=20 i
\cos\alpha=\frac{4}{5} , promień okręgu opisanego
na tym trójkącie ma długość
\frac{50}{3} :
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż