Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:19 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 4 i \frac{361}{6}
B. 4 i \frac{38}{3}
C. 1 i \frac{38}{3}
D. 24 i \frac{722}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
18 . Kąt środkowy koła
\alpha
oparty jest na łuku o długości
4\pi :
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 402/594 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=7 ,
|BC|=15
oraz
\sin\sphericalangle ABC=\frac{4\sqrt{11}}{15} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{13}{9} i
4 oraz kącie ostrym o mierze
45^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
80 jest równe
100 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Jeden z kątów trójkąta równoramiennego ma miarę
\alpha taką, że
\cos\alpha=-\frac{\sqrt{2}}{2}
a pole powierzchni tego trójkąta jest równe
841\sqrt{2} .
Oblicz \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 23/63 [36%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
16296 , a promień
okręgu wpisanego w ten trójkąt ma długość
56 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Odcinki
DE ,
FG i
AB
są równoległe, a pola wielokątów
DEC ,
FGED i
ABGF
pozostają w stosunku
a:b:c .
Oblicz \frac{|DE|}{|FG|} .
Dane
a=9
b=27
c=28
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=81\pi=254.46900494077325
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=13:1 . Odcinek
CD jest 14 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż