Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 6:9. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{15}{2} B. 5 i \frac{27}{2}
C. 30 i \frac{135}{2} D. 5 i \frac{15}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 30. Kąt środkowy koła \alpha oparty jest na łuku o długości 11\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=6, |BC|=14 oraz \sin\sphericalangle ABC=\frac{2\sqrt{10}}{7}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 9 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 64 jest równe 64. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Podstawą trójkąta równoramiennego ABC jest bok AB. Środkowe AL i BK przecinają się w punkcie S i tworzą kąt ASB o mierze 60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS jest równe 121\sqrt{3}.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 72, a pole powierzchni tego trójkąta jest równe 972.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Trójkąt ABC jest ostrokątny i równoramienny o podstawie AB:

Oblicz P_{ABC}.

Dane
|AB|+|BC|+|AC|=480
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W wycinek kołowy o kącie środkowym \alpha wpisano okrąg o polu powierzchni P:

Oblicz pole powierzchni tego wycinka.

Dane
\alpha=120^{\circ}
P=64\pi=201.06192982974677
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Oblicz długość środkowej trójkąta o bokach długości 8, 9 i 11, poprowadzonej do najdłuższego boku.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm