Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
5:9. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 3 i \frac{27}{5}
|
B. 15 i \frac{243}{5}
|
|
C. 1 i \frac{27}{5}
|
D. 3 i \frac{81}{5}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
3:\pi, a średnica tego koła ma długość
18.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
8, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{4}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
10,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
60, a jego wysokość długość
16.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20902 ⋅ Poprawnie: 33/50 [66%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta
ABC jest równe
40.
Środkowa
CD ma długość
8, a sinus kąta
BDC jest równy
\frac{5}{8}.
Oblicz długość boku AB.
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Pole powierzchni trójkąta równoramiennego jest równe
2640, a tangens kąta
kąta przy podstawie jest równy
\frac{55}{48}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD}.
Dane
|AS|=15
|SB|=7
|SC|=11
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l:
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=8\pi=25.13274122871835
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD, w którym
|AB|=3 i
|AD|=6, ma miarę
60^{\circ}.
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)