Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
7 cm
2 i
81 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
72\pi , a łuk tego wycinka ma długość
\frac{13}{6}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
14 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{11}{7} i
8 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
28 i
przecinają się pod kątem o mierze
30^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Odcinki
AM i
MB
na rysunku maja równą długość, a bok
AC ma długość
36 :
Wiedząc, że P_{\triangle ABC}=648\sqrt{3} , oblicz
P_{\triangle ABM} .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Pole powierzchni trójkąta równoramiennego jest równe
768 , a tangens kąta
kąta przy podstawie jest równy
\frac{4}{3} .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AC|:|AB|=20:21 , Punkt
D należy do
przeciwprostokątnej
BC oraz
|CD|:|DB|=5:3 .
Punkt
E należy do przyprostokątnej
AB i
ED\perp BC .
Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni
trójkąta EBD .
Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=11
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=9:1 . Odcinek
CD jest 10 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż