Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
2 cm
2 i
250 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
9 , a kąt wycinka tego koła ma miarę
20^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=9 ,
|BC|=15
oraz
\sin\sphericalangle ABC=\frac{4}{5} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
3
i
\frac{3}{2} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
30 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{10}{11}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
28 , a cosinus
kąta przy podstawie jest równy
\frac{7}{25} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trapezie
ABCD ,
AB\parallel CD , poprowadzono przekątne,
które przecięły się w punkcie
E . Pola powierzchni trójkątów
ABE i
BCE są równe odpowiednio
20 i
12 .
Oblicz pole powierzchni trójkąta CDE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l :
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=16\pi=50.26548245743669
\alpha=15^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz długość niebieskiego odcinka na rysunku wiedząc, że:
|AD|=180 ,
|DB|=2 ,
|AC|=181 ,
|BC|=\sqrt{365} :
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Rozwiąż