Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 10 cm2 i 144 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 17:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 6, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{7}}{4}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 72, a jego wysokość długość 27.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « W okrąg o obwodzie \frac{1}{9}\pi wpisano ośmiokąt foremny.

Oblicz pole powierzchni tego ośmiokąta.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 2640, a cosinus kąta przy podstawie jest równy \frac{48}{73}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{36}{25}, a obwód tego trójkąta ma długość 16.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=8\pi=25.13274122871835
\alpha=40^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC, w którym |AB|=72, |AC|=45 i \cos\alpha=\frac{4}{5}, promień okręgu opisanego na tym trójkącie ma długość \frac{75}{2}:

Oblicz sumę sinusów wszystkich kątów tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm