Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 2 cm2 i 144 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 28:100.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=8, |BC|=15 oraz \sin\sphericalangle ABC=\frac{\sqrt{161}}{15}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 10 i 16, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 16 jest równe 4. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Jeden z kątów trójkąta równoramiennego ma miarę \alpha taką, że \cos\alpha=-\frac{\sqrt{3}}{2} a pole powierzchni tego trójkąta jest równe 729\sqrt{3}.

Oblicz \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Pole powierzchni trójkąta równoramiennego jest równe 960, a tangens kąta kąta przy podstawie jest równy \frac{12}{5}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=35:12, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=1:2. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 11 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt ostry DAB równoległoboku ABCD, w którym |AB|=7 i |AD|=8, ma miarę 45^{\circ}.

Oblicz długość krótszej przekątnej tego równoległoboku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm