Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 16:81, mogą być równe:
Odpowiedzi:
A. 4:\frac{16}{9} B. 8:\frac{16}{3}
C. 4:\frac{81}{4} D. 9:\frac{16}{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 66\pi, a łuk tego wycinka ma długość \frac{11}{4}\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 34 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 10 i \frac{5}{8} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 42. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Odcinki AM i MB na rysunku maja równą długość, a bok AC ma długość 30:

Wiedząc, że P_{\triangle ABC}=450\sqrt{3}, oblicz P_{\triangle ABM}.

Odpowiedź:
P_{\triangle ABM}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 96, a tangens kąta przy podstawie jest równy \frac{5}{12}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=5:12, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=5:4. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 9 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt ostry DAB równoległoboku ABCD, w którym |AB|=4 i |AD|=10, ma miarę 30^{\circ}.

Oblicz długość krótszej przekątnej tego równoległoboku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm