Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
9 cm
2 i
48 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
16. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
12\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
3, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{2}}{6}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
12,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
60.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20902 ⋅ Poprawnie: 33/50 [66%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta
ABC jest równe
80.
Środkowa
CD ma długość
15, a sinus kąta
BDC jest równy
\frac{1}{3}.
Oblicz długość boku AB.
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
32, a pole
powierzchni tego trójkąta jest równe
1008.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=58
|AB|=80
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ}.
Pole powierzchni mniejszego z kół jest równe
31.
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym
|AB|=6\sqrt{10},
|BC|=6\sqrt{5},
|AC|=3\sqrt{10}+3\sqrt{30} i
\alpha=30^{\circ}:
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}\ [^{\circ}]=
(wpisz liczbę całkowitą)