Podgląd testu : lo2@sp-16-trojkaty-pole-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{3}{2} . Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
7:\pi , a średnica tego koła ma długość
10 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
2 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{2}}{2} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{6}{5} i
4 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W trójkącie prostokątnym kąt ostry spałnia warunek
\cos\alpha=\frac{8}{11} ,
a promień okręgu opisanego na tym trójkącie ma długość
\frac{55}{6} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
17 i
21 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{85}{8} . Pole powierzcni
tego trójkąta jest równe
84 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie ostrokątnym równoramiennym
ABC ,
|AC|=|BC| ,
poprowadzono wysokości
CD i
BE . Stosunek pól powierzchni
trójkątów
ABE i
ADC jest równy
P_{ABE}:P_{ADC}=\frac{36}{25} , a obwód tego trójkąta ma długość
64 .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=49\pi=153.93804002589987
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Oblicz długość środkowej trójkąta o bokach długości
7 ,
11 i
14 , poprowadzonej do najdłuższego boku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż