Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 6:16. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 2 i \frac{16}{3} B. 1 i \frac{16}{3}
C. 2 i \frac{128}{3} D. 12 i \frac{256}{3}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 5:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 54 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 10 i \frac{3}{2} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 20, a jego wysokość długość 24.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-20879 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) W trójkącie równoramiennym ABC punkt E dzieli wysokość CD tego trójkąta w stosunku |CE|:|ED|=3:1. Przez punkt E poprowadzono prostopadłą do boku BC, która przecięła ten bok w punkcie F (zobacz rysunek):

Wiedząc, że \sin\alpha=\frac{84}{85}, oblicz o ile procent ramię trójkąta BC jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 (2 pkt) Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Pole powierzchni trójkąta jest równe 1170, a promień okręgu wpisanego w ten trójkąt ma długość 15.

Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość najdłuższej wysokości tego trójkąta.

Odpowiedź:
h_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W ostrokątnym trójkącie równoramiennym ABC, |AC|=|BC|, wysokość CD przecięła wysokość AE w punkcie S. Wysokość AE dzieli ramię BC tego trójkąta w stosunku |BE|:|EC|=1:2.

Oblicz sinus kąta EAB.

Odpowiedź:
\sin\sphericalangle EAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz stosunek pola powierzchni trójkąta ADC do pola powierzchni trójkąta CSE.
Odpowiedź:
\frac{P_{\triangle ADC}}{P_{\triangle CSE}}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=4\pi=12.56637061435917
\alpha=12^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |AB|=\sqrt{2}, |BC|=\sqrt{14} i |AC|=2\sqrt{6}.

Oblicz miarę kąta CAB.

Odpowiedź:
|\sphericalangle CAB|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=4
b=3
P=121
Odpowiedź:
P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm