Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:25, mogą być równe:
Odpowiedzi:
A. 3:\frac{9}{5} B. 3:\frac{25}{3}
C. 6:\frac{27}{5} D. 5:\frac{9}{5}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 4:\pi, a średnica tego koła ma długość 6.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 3\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 2 i 20, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 40, a jego wysokość długość 21.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Odcinki AM i MB na rysunku maja równą długość, a bok AC ma długość 10:

Wiedząc, że P_{\triangle ABC}=50\sqrt{3}, oblicz P_{\triangle ABM}.

Odpowiedź:
P_{\triangle ABM}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 8 i 26, a promień okręgu opisanego na tym trójkącie ma długość \frac{65}{4}. Pole powierzcni tego trójkąta jest równe 96.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=13:84, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=8:3. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=4
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20738 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » W trójkącie ostrokątnym ABC dane są: długość boku |AB|=38 oraz tangens kąta przy wierzchołku C: \tan\gamma=\frac{4}{3}.

Oblicz długość promienia koła opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Odcinki na rysunku maja długość: a=48, b=42 i c=18:

Oblicz obwód trójkąta na rysunku.

Odpowiedź:
L= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm