« Dwa boki trójkąta mają długość |AC|=5, |BC|=7,
a kąt ACB ma miarę 120^{\circ}.
Przez punkt C poprowadzono prostą prostopadłą do boku
AC, która przecięła bok AB w punkcie
D.
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz długość odcinka DB.
Odpowiedź:
|DB|=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%]
W prostokącie ABCD dane są długości boków |AB|=26
i |AD|=24. Na boku CD zaznaczono punkt
E taki, że |DE|=16, zaś na odcinku EB punkt
M taki, że |EM|=24 (zobacz rysunek).
Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni
trójkąta ABM.
Odpowiedź:
P_{ABM}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość odcinka AM.
Odpowiedź:
|AM|=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
ABM.
Odpowiedź:
R=
\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat