Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{9}{7}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 64\pi, a łuk tego wycinka ma długość \frac{8}{7}\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=7, |BC|=13 oraz \sin\sphericalangle ABC=\frac{2\sqrt{30}}{13}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 8 i \frac{8}{13} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 48 jest równe 36. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 9 i 15. Kąt \gamma zawarty między tymi bokami ma miarę 60^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 25 i 29, a promień okręgu opisanego na tym trójkącie ma długość \frac{145}{8}. Pole powierzcni tego trójkąta jest równe 60.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=80:39, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=1:8. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=10
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20747 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny, a liczba k jest równa 6:

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie na rysunku dane są długości odcinków: |AD|=4, |DB|=10, |BC|=8\sqrt{2} i |AC|=10:

Oblicz \sin\sphericalangle{ADC}.

Odpowiedź:
\sin\sphericalangle{ADC}= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm