Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:15. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 1 i 10
|
B. 4 i \frac{75}{2}
|
|
C. 24 i 150
|
D. 4 i 10
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
13:85.
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
24 i kącie rozwartym
150^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
8
i
\frac{5}{13} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
40 jest równe
25. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
|
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
27,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=\frac{2}{3}.
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
84, a promień
okręgu wpisanego w ten trójkąt ma długość
4.
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Trójkąt
ABC jest ostrokątny i równoramienny o
podstawie
AB:
Oblicz P_{ABC}.
Dane
|AB|+|BC|+|AC|=320
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{7}=10.58300524425836
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC, w którym
d=4 i
|AC|=8:
Oblicz \sin\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« W trójkącie na rysunku dane są długości odcinków:
|AD|=3,
|DB|=\frac{15}{2},
|BC|=6\sqrt{2} i
|AC|=\frac{15}{2}:
Oblicz \sin\sphericalangle{ADC}.
Odpowiedź:
\sin\sphericalangle{ADC}=
(liczba zapisana dziesiętnie)