Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:49, mogą być równe:
Odpowiedzi:
A. 21:6 B. 3:\frac{49}{3}
C. 3:\frac{9}{7} D. 6:\frac{27}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 9, a kąt wycinka tego koła ma miarę 36^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=15 oraz \sin\sphericalangle ABC=\frac{4}{5}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 60. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 4 i 12. Kąt \gamma zawarty między tymi bokami ma miarę 90^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym P i kącie między ramionami o mierze 45^{\circ}.

Podaj długość ramienia tego trójkąta.

Dane
P=9\sqrt{2}=12.72792206135786
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj długość podstawy tego trójkąta.
Odpowiedź:
a= (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dany jest trójkąt:

Oblicz |DE|.

Dane
|AC|=15
P_{\triangle DBE}:P_{ADEC}=171:669=0.25560538116592
Odpowiedź:
|DE|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 31.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20770 ⋅ Poprawnie: 77/65 [118%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dwa boki trójkąta mają długość 9 i 10. Dowolny punkt boku trzeciego połączono z wierzchołkiem kąta naprzeciwległego odcinkiem, który podzielił ten trójkąta na dwa mniejsze trójkąty.

Oblicz stosunek długości promieni okręgów opisanych na otrzymanych trójkątach. Podaj wartość tego stosunku należącą do przedziału \langle 1,+\infty).

Odpowiedź:
r_1:r_2=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Na bokach AB i AC trójkąta ABC obrano punkty odpowiednio M i L, takie, że |MB|=2|AM| oraz |LC|=3|AL|. Proste CM i BL przecięły się w punkcie S. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie K. Pole powierzchni trójkąta ABC jest równe 60. Oblicz pola powierzchni trójkątów AMS, MBS, ASL i LSC.

Podaj najmniejsze z tych pól.

Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm