Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 6 cm2 i 160 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 15:113.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 402/594 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=7, |BC|=15 oraz \sin\sphericalangle ABC=\frac{4\sqrt{11}}{15}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 10 i 12, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 32 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Odcinki AM i MB na rysunku maja równą długość, a bok AC ma długość 42:

Wiedząc, że P_{\triangle ABC}=882\sqrt{3}, oblicz P_{\triangle ABM}.

Odpowiedź:
P_{\triangle ABM}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 224, a cosinus kąta przy podstawie jest równy \frac{112}{113}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trapezie ABCD, AB\parallel CD, poprowadzono przekątne, które przecięły się w punkcie E. Pola powierzchni trójkątów ABE i BCE są równe odpowiednio 35 i 30.

Oblicz pole powierzchni trójkąta CDE.

Odpowiedź:
P_{\triangle CDE}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 31.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20565 ⋅ Poprawnie: 83/65 [127%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt:

Wiedząc, że x=8, oblicz \frac{\cos^2\alpha}{2\cos^2\beta-1}.

Odpowiedź:
\frac{\cos^2\alpha}{2\cos^2\beta-1}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Pole powierzchni trójkąta o kącie ostrym 30^{\circ} jest równe 8\sqrt{3}, a promień okręgu na nim opisanego ma długość 4.

Podaj długość najdłuższego boku tego trójkąta.

Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm