Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:49, mogą być równe:
Odpowiedzi:
A. 3:\frac{49}{3} B. 7:\frac{9}{7}
C. 3:\frac{9}{7} D. 6:\frac{27}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 10:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 16 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 6 i \frac{13}{8} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 22. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 6 i 7. Kąt \gamma zawarty między tymi bokami ma miarę 60^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 26 i 28, a promień okręgu opisanego na tym trójkącie ma długość \frac{65}{4}. Pole powierzcni tego trójkąta jest równe 336.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dany jest trójkąt:

Oblicz |DE|.

Dane
|AC|=28
P_{\triangle DBE}:P_{ADEC}=422:922=0.45770065075922
Odpowiedź:
|DE|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 5 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dany jest trójkąt ABC, w którym d=4 i |AC|=8:

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \sin\beta.
Odpowiedź:
\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Na bokach AB i AC trójkąta ABC obrano punkty odpowiednio M i L, takie, że |MB|=2|AM| oraz |LC|=3|AL|. Proste CM i BL przecięły się w punkcie S. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie K. Pole powierzchni trójkąta ABC jest równe 96. Oblicz pola powierzchni trójkątów AMS, MBS, ASL i LSC.

Podaj najmniejsze z tych pól.

Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm