Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
8 cm
2 i
250 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
2 , a kąt wycinka tego koła ma miarę
198^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
16 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
10 i
20 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
32 , a jego wysokość długość
12 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dwa boki trójkąta mają długość
|AC|=8 ,
|BC|=10 ,
a kąt
ACB ma miarę
120^{\circ} .
Przez punkt
C poprowadzono prostą prostopadłą do boku
AC , która przecięła bok
AB w punkcie
D .
Oblicz długość odcinka CD .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Oblicz długość odcinka
DB .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
16296 , a promień
okręgu wpisanego w ten trójkąt ma długość
56 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najdłuższej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE| .
Dane
|AC|=32
P_{\triangle DBE}:P_{ADEC}=160:800=0.20000000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ} .
Pole powierzchni mniejszego z kół jest równe
28 .
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
5 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
16 .
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2| .
Odpowiedź:
|O_1O_2|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=112 ,
b=98 i
c=42 :
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż