Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
9:121 , mogą być równe:
Odpowiedzi:
A. 3:\frac{121}{3}
B. 3:\frac{9}{11}
C. 33:6
D. 6:\frac{27}{11}
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
9 , a kąt wycinka tego koła ma miarę
115^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
12 i kącie rozwartym
150^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{11}{8} i
13 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
26 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długość
5 i
13 .
Kąt
\gamma zawarty między tymi bokami ma miarę
60^{\circ} .
Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 23/63 [36%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
6 , a promień
okręgu wpisanego w ten trójkąt ma długość
1 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trapezie
ABCD ,
AB\parallel CD , poprowadzono przekątne,
które przecięły się w punkcie
E . Pola powierzchni trójkątów
ABE i
BCE są równe odpowiednio
52 i
39 .
Oblicz pole powierzchni trójkąta CDE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ} .
Pole powierzchni mniejszego z kół jest równe
26 .
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt
ABC , w którym
|AB|=3\sqrt{2} ,
|BC|=\sqrt{14} i
|AC|=2\sqrt{2} .
Oblicz miarę kąta CAB .
Odpowiedź:
|\sphericalangle CAB|=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkąt prostokątny wpisano okrąg o promieniu długości
180 . Tangens kąta ostrego tego trójkąta jest równy
0,75 .
Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności
tego okręgu z przeciwprostokątną tego trójkąta.
Odpowiedź:
Rozwiąż