Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{9}{7}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 21\pi, a łuk tego wycinka ma długość 7\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 4, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{3}}{7}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 12, a jego wysokość długość 8.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20444 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Środkowe AM i CN trójkąta ABC mają długość |AM|=15 i |CN|=6 i przecinają się pod kątem prostym.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Pole powierzchni trójkąta równoramiennego jest równe 12, a tangens kąta kąta przy podstawie jest równy \frac{4}{3}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{36}{25}, a obwód tego trójkąta ma długość 16.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=8\pi=25.13274122871835
\alpha=48^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |AB|=2\sqrt{2}, |BC|=\sqrt{6} i |AC|=\sqrt{2}.

Oblicz miarę kąta CAB.

Odpowiedź:
|\sphericalangle CAB|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie na rysunku dane są długości odcinków: |AD|=1, |DB|=\frac{5}{2}, |BC|=2\sqrt{2} i |AC|=\frac{5}{2}:

Oblicz \sin\sphericalangle{ADC}.

Odpowiedź:
\sin\sphericalangle{ADC}= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm