Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
3:13. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 5 i \frac{169}{3}
|
B. 1 i \frac{65}{3}
|
|
C. 15 i \frac{845}{3}
|
D. 5 i \frac{65}{3}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
20. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
2\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
9, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{5}}{6}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
8
i
\frac{11}{12} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
48, a jego wysokość długość
32.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20444 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Środkowe
AM i
CN trójkąta
ABC mają długość
|AM|=15 i
|CN|=21 i
przecinają się pod kątem prostym.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
32, a tangens
kąta przy podstawie jest równy
\frac{3}{4}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB:
Oblicz \sin\sphericalangle DAB.
Dane
k=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ}.
Pole powierzchni mniejszego z kół jest równe
17.
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=36\sqrt{2} oraz
|BC|=60:
Odpowiedź:
R=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=80,
b=70 i
c=30:
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)