Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:9 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 5 i \frac{27}{2}
B. 1 i \frac{15}{2}
C. 5 i \frac{15}{2}
D. 30 i \frac{135}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
6:\pi , a średnica tego koła ma długość
8 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=9 ,
|BC|=11
oraz
\sin\sphericalangle ABC=\frac{2\sqrt{10}}{11} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
6
i
\frac{5}{9} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
72 jest równe
81 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
24 ,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=\frac{1}{3} .
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
56 , a cosinus
kąta przy podstawie jest równy
\frac{28}{53} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wysokość
CD trójkąta
ABC ma długość
4 i dzieli bok
AB tego trójkąta
na odcinki o długości
|AD|=6 i
|DB|=10 .
Poprowadzono prostą równoległą do wysokości
CD , która przecięła
boki
AB i
BC odpowiednio w punktach
E i
F .
Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie
figury o równych polach powierzchni, oblicz jego długość.
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=11
R=33
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC , w którym
d=4 i
|AC|=8 :
Oblicz \sin\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
\frac{33\sqrt{3}}{4} , a promień okręgu na nim opisanego
ma długość
7 .
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Rozwiąż