Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{9}{8}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
18. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
10\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 402/594 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=7,
|BC|=14
oraz
\sin\sphericalangle ABC=\frac{\sqrt{3}}{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
3 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
80, a jego wysokość długość
9.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC, w którym:
|AC|=10,
|BC|=20 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{50\sqrt{3}}{3}:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
1680, a cosinus
kąta przy podstawie jest równy
\frac{12}{37}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD}.
Dane
|AS|=4
|SB|=18
|SC|=12
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=2\sqrt{10}=6.32455532033676
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC, w którym
|AB|=80,
|AC|=41 i
\cos\alpha=\frac{40}{41}, promień okręgu opisanego
na tym trójkącie ma długość
\frac{1681}{18}:
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC,
BC i kąt
między tymi bokami o mierze
60^{\circ}.
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D.
Oblicz |CD|.
Dane
|AC|=3
|BC|=10
Odpowiedź: