Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{7}{4}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 48:73.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 5\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 4 i \frac{4}{9} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 8 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Odcinki AM i MB na rysunku maja równą długość, a bok AC ma długość 12:

Wiedząc, że P_{\triangle ABC}=72\sqrt{3}, oblicz P_{\triangle ABM}.

Odpowiedź:
P_{\triangle ABM}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 14 i 15, a promień okręgu opisanego na tym trójkącie ma długość \frac{65}{8}. Pole powierzcni tego trójkąta jest równe 84.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wysokość CD trójkąta ABC ma długość 4 i dzieli bok AB tego trójkąta na odcinki o długości |AD|=4 i |DB|=6. Poprowadzono prostą równoległą do wysokości CD, która przecięła boki AB i BC odpowiednio w punktach E i F.

Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie figury o równych polach powierzchni, oblicz jego długość.

Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=6
R=18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |AB|=3\sqrt{3}, |BC|=\sqrt{15} i |AC|=\sqrt{6}.

Oblicz miarę kąta CAB.

Odpowiedź:
|\sphericalangle CAB|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkącie ABC dane są długości boków AC, BC i kąt między tymi bokami o mierze 60^{\circ}. Dwusieczna kąta BCA przecina bok AB w punkcie D.

Oblicz |CD|.

Dane
|AC|=5
|BC|=4
Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm