Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
3:18 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 12 i 432
B. 4 i 108
C. 4 i 24
D. 1 i 24
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
5 , a kąt wycinka tego koła ma miarę
180^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
22 i kącie rozwartym
150^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
10 i
12 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
40 jest równe
25 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{3}{5}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
60 , a pole
powierzchni tego trójkąta jest równe
480 .
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trapezie
ABCD ,
AB\parallel CD , poprowadzono przekątne,
które przecięły się w punkcie
E . Pola powierzchni trójkątów
ABE i
BCE są równe odpowiednio
49 i
21 .
Oblicz pole powierzchni trójkąta CDE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{11}=13.26649916142160
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=6:1 . Odcinek
CD jest 7 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ} ,
|AC|=b i
|BC|=a oraz
dwusieczna
CD .
Oblicz |CD| .
Dane
a=4
b=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC .
Odpowiedź:
Rozwiąż