Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:14 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 24 i \frac{392}{3}
B. 4 i \frac{98}{3}
C. 1 i \frac{28}{3}
D. 4 i \frac{28}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
3:\pi , a średnica tego koła ma długość
12 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
10\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{3}{10} i
8 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
36 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W trójkącie prostokątnym kąt ostry spałnia warunek
\cos\alpha=\frac{3}{10} ,
a promień okręgu opisanego na tym trójkącie ma długość
\frac{25}{3} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
160 , a cosinus
kąta przy podstawie jest równy
\frac{80}{89} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ostrokątnym trójkącie równoramiennym
ABC ,
|AC|=|BC| , wysokość
CD przecięła
wysokość
AE w punkcie
S .
Wysokość
AE dzieli ramię
BC tego trójkąta
w stosunku
|BE|:|EC|=1:2 .
Oblicz sinus kąta EAB .
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Wyznacz stosunek pola powierzchni trójkąta
ADC do pola powierzchni
trójkąta
CSE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=12
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20890 ⋅ Poprawnie: 211/342 [61%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym:
\sin\alpha=\frac{4}{5} ,
\cos\beta=\frac{3}{5} i
|BC|=6 :
Oblicz |AC| .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=80 ,
b=70 i
c=30 :
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż