Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
49:64 , mogą być równe:
Odpowiedzi:
A. 7:\frac{64}{7}
B. 7:\frac{49}{8}
C. 24:14
D. 14:\frac{147}{8}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
16\pi , a łuk tego wycinka ma długość
\frac{5}{3}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
4 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{13}{10} i
2 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
32 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20279 ⋅ Poprawnie: 104/190 [54%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długości
\frac{1}{2} i
\frac{3}{8} , a pole powierzchni tego trójkąta jest równe
\frac{1}{16} .
Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między
tymi bokami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
12 i
17 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{85}{6} . Pole powierzcni
tego trójkąta jest równe
90 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE| .
Dane
|AC|=24
P_{\triangle DBE}:P_{ADEC}=147:237=0.62025316455696
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ} .
Pole powierzchni mniejszego z kół jest równe
30 .
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20746 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dany jest trójkąt:
Oblicz \cos\sphericalangle BCA .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
\frac{\sqrt{3}}{4} , a promień okręgu na nim opisanego
ma długość
1 .
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Rozwiąż