Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{12}{5}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 27. Kąt środkowy koła \alpha oparty jest na łuku o długości 9\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 9\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{5}{12} i 6 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 24, a jego wysokość długość 5.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 840, a tangens jednego z kątów ostrych tego trójkąta jest równy \frac{21}{20}.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 48, a pole powierzchni tego trójkąta jest równe 768.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=60:11, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=5:2. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=6\pi=18.84955592153876
\alpha=20^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt D należy do podstawy AB trójkąta równoramiennego ABC i dzieli tę podstawę w stosunku |AD|:|DB|=11:1. Odcinek CDjest 12 razy dłuższy od odcinka DB.

Oblicz \cos\sphericalangle ADC.

Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 ««« W trójkącie ABC dane są: |\sphericalangle BCA|=120^{\circ}, |AC|=b i |BC|=a oraz dwusieczna CD.

Oblicz |CD|.

Dane
a=8
b=4
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie DBC.
Odpowiedź:
R_{\triangle DBC}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm