Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:16, mogą być równe:
Odpowiedzi:
A. 4:\frac{9}{4} B. 3:\frac{16}{3}
C. 3:\frac{9}{4} D. 6:\frac{27}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 3:5.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=10 oraz \sin\sphericalangle ABC=\frac{\sqrt{19}}{10}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 4. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 12, a jeden z jego kątów ostrych spełnia warunek \tan\alpha=\frac{1}{6}.

Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym P i kącie między ramionami o mierze 45^{\circ}.

Podaj długość ramienia tego trójkąta.

Dane
P=4\sqrt{2}=5.65685424949238
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj długość podstawy tego trójkąta.
Odpowiedź:
a= (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{1600}{841}, a obwód tego trójkąta ma długość 98.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 3.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20884 ⋅ Poprawnie: 94/163 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dwa boki trójkąta mają długość 6 i 3, a \alpha jest kątem zawartym między nimi, przy czym \sin\alpha=\frac{\sqrt{35}}{6}.

Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.

Odpowiedź:
c_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Odcinki na rysunku maja długość: a=32, b=28 i c=12:

Oblicz obwód trójkąta na rysunku.

Odpowiedź:
L= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm