Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
49:100 , mogą być równe:
Odpowiedzi:
A. 10:\frac{49}{10}
B. 14:\frac{147}{10}
C. 7:\frac{49}{10}
D. 7:\frac{100}{7}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
64\pi , a łuk tego wycinka ma długość
\frac{2}{9}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
32 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{3}{10} i
10 oraz kącie ostrym o mierze
60^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
6 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Punkty
M i
N są środkami
boków trójkąta na rysunku i spełniają warunki:
|AM|=\frac{12}{5} i
|BN|=\frac{21}{5} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
8 i
26 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{65}{4} . Pole powierzcni
tego trójkąta jest równe
96 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AC|:|AB|=8:15 , Punkt
D należy do
przeciwprostokątnej
BC oraz
|CD|:|DB|=8:5 .
Punkt
E należy do przyprostokątnej
AB i
ED\perp BC .
Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni
trójkąta EBD .
Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=49\pi=153.93804002589987
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym
|AB|=6 ,
|BC|=3\sqrt{2} ,
|AC|=3+3\sqrt{3} i
\alpha=30^{\circ} :
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=32 ,
b=28 i
c=12 :
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż