Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 4:8. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 12 i 48 B. 3 i 16
C. 1 i 6 D. 3 i 6
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 12:20.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 7\sqrt{2} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{5}{13} i 7 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-20879 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) W trójkącie równoramiennym ABC punkt E dzieli wysokość CD tego trójkąta w stosunku |CE|:|ED|=5:1. Przez punkt E poprowadzono prostopadłą do boku BC, która przecięła ten bok w punkcie F (zobacz rysunek):

Wiedząc, że \cos\alpha=\frac{8}{17}, oblicz o ile procent ramię trójkąta BC jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 (2 pkt) Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 11 i 25, a promień okręgu opisanego na tym trójkącie ma długość \frac{125}{8}. Pole powierzcni tego trójkąta jest równe 132.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wysokość CD trójkąta ABC ma długość 7 i dzieli bok AB tego trójkąta na odcinki o długości |AD|=2 i |DB|=6. Poprowadzono prostą równoległą do wysokości CD, która przecięła boki AB i BC odpowiednio w punktach E i F.

Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie figury o równych polach powierzchni, oblicz jego długość.

Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt O jest środkiem okręgu. Oblicz pole powierzchni niebieskiego obszaru:
Dane
r=8
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dwa okręgi o środkach O_1 i O_2 i promieniu 4 są styczne, jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku O i promieniu 10.

Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ} oblicz |O_1O_2|.

Odpowiedź:
|O_1O_2|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie na rysunku dane są długości odcinków: |AD|=4, |DB|=10, |BC|=8\sqrt{2} i |AC|=10:

Oblicz \sin\sphericalangle{ADC}.

Odpowiedź:
\sin\sphericalangle{ADC}= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm