Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{11}{3}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
8\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
2 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
12,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
16.
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Odcinki
AM i
MB
na rysunku maja równą długość, a bok
AC ma długość
12:
Wiedząc, że P_{\triangle ABC}=72\sqrt{3}, oblicz
P_{\triangle ABM}.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
160, a sinus
kąta przy podstawie jest równy
\frac{39}{89}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=40
|AB|=48
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
3 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt
ABC, w którym
|AB|=4\sqrt{2},
|BC|=\sqrt{26} i
|AC|=\sqrt{2}.
Oblicz miarę kąta CAB.
Odpowiedź:
|\sphericalangle CAB|=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=3
b=4
P=100
Odpowiedź:
P=
(wpisz liczbę całkowitą)