W trójkącie dwa boki mają długość 25, a promień okręgu opisanego
na tym trójkącie ma długość \frac{625}{14}. Pole powierzchni tego trójkąta
jest równe 168.
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0
Wysokość CD trójkąta ABC ma długość
4 i dzieli bok AB tego trójkąta
na odcinki o długości |AD|=8 i |DB|=14.
Poprowadzono prostą równoległą do wysokości CD, która przecięła
boki AB i BC odpowiednio w punktach
E i F.
Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie
figury o równych polach powierzchni, oblicz jego długość.
Odpowiedź:
|EF|=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%]