Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 4:81, mogą być równe:
Odpowiedzi:
A. 2:\frac{81}{2} B. 9:\frac{4}{9}
C. 2:\frac{4}{9} D. 27:4
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 3:5.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=8, |BC|=13 oraz \sin\sphericalangle ABC=\frac{\sqrt{105}}{13}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{9}{10} i 3 oraz kącie ostrym o mierze 45^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 38. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 384, a tangens jednego z kątów ostrych tego trójkąta jest równy \frac{4}{3}.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 12, a pole powierzchni tego trójkąta jest równe 48.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wysokość CD trójkąta ABC ma długość 6 i dzieli bok AB tego trójkąta na odcinki o długości |AD|=2 i |DB|=14. Poprowadzono prostą równoległą do wysokości CD, która przecięła boki AB i BC odpowiednio w punktach E i F.

Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie figury o równych polach powierzchni, oblicz jego długość.

Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 8 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |AB|=6, |BC|=3\sqrt{2} i |AC|=3\sqrt{2}.

Oblicz miarę kąta CAB.

Odpowiedź:
|\sphericalangle CAB|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=1
b=3
P=25
Odpowiedź:
P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm