Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
4:81 , mogą być równe:
Odpowiedzi:
A. 2:\frac{81}{2}
B. 9:\frac{4}{9}
C. 2:\frac{4}{9}
D. 27:4
Zadanie 2. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
3:5 .
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=8 ,
|BC|=13
oraz
\sin\sphericalangle ABC=\frac{\sqrt{105}}{13} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{9}{10} i
3 oraz kącie ostrym o mierze
45^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
38 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
384 ,
a tangens jednego z kątów ostrych tego trójkąta jest równy
\frac{4}{3} .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
12 , a pole
powierzchni tego trójkąta jest równe
48 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wysokość
CD trójkąta
ABC ma długość
6 i dzieli bok
AB tego trójkąta
na odcinki o długości
|AD|=2 i
|DB|=14 .
Poprowadzono prostą równoległą do wysokości
CD , która przecięła
boki
AB i
BC odpowiednio w punktach
E i
F .
Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie
figury o równych polach powierzchni, oblicz jego długość.
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
8 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt
ABC , w którym
|AB|=6 ,
|BC|=3\sqrt{2} i
|AC|=3\sqrt{2} .
Oblicz miarę kąta CAB .
Odpowiedź:
|\sphericalangle CAB|=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a . Pole powierzchni
tego trójkąta jest równe
P .
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=1
b=3
P=25
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Rozwiąż