(1 pkt)
W trójkącie równoramiennym ABC punkt
E dzieli wysokość CD tego trójkąta
w stosunku |CE|:|ED|=4:1. Przez punkt E
poprowadzono prostopadłą do boku BC, która przecięła ten bok
w punkcie F (zobacz rysunek):
Wiedząc, że \sin\alpha=\frac{12}{13}, oblicz
o ile procent ramię trójkąta BC
jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
(2 pkt)
Oblicz jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%]
Wysokość CD trójkąta ABC ma długość
6 i dzieli bok AB tego trójkąta
na odcinki o długości |AD|=4 i |DB|=12.
Poprowadzono prostą równoległą do wysokości CD, która przecięła
boki AB i BC odpowiednio w punktach
E i F.
Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie
figury o równych polach powierzchni, oblicz jego długość.
Odpowiedź:
|EF|=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
W prostokącie ABCD dane są długości boków |AB|=39
i |AD|=36. Na boku CD zaznaczono punkt
E taki, że |DE|=24, zaś na odcinku EB punkt
M taki, że |EM|=36 (zobacz rysunek).
Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni
trójkąta ABM.
Odpowiedź:
P_{ABM}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość odcinka AM.
Odpowiedź:
|AM|=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
ABM.
Odpowiedź:
R=
\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat