Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 6:17. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 2 i \frac{289}{6} B. 1 i \frac{17}{3}
C. 2 i \frac{17}{3} D. 12 i \frac{289}{3}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 22:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 2\sqrt{3} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{7}{4} i 13 oraz kącie ostrym o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 16 jest równe 4. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 6/11 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 336, a tangens jednego z kątów ostrych tego trójkąta jest równy \frac{24}{7}.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 32, a sinus kąta przy podstawie jest równy \frac{3}{5}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=12:35, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=7:6. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=12\pi=37.69911184307752
\alpha=36^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20738 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » W trójkącie ostrokątnym ABC dane są: długość boku |AB|=18 oraz tangens kąta przy wierzchołku C: \tan\gamma=\frac{4}{3}.

Oblicz długość promienia koła opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 100. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm