Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
25:64 , mogą być równe:
Odpowiedzi:
A. 5:\frac{64}{5}
B. 10:\frac{75}{8}
C. 8:\frac{25}{8}
D. 5:\frac{25}{8}
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
6 , a kąt wycinka tego koła ma miarę
186^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
10\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{7}{11} i
11 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
34 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Jeden z kątów trójkąta równoramiennego ma miarę
\alpha taką, że
\cos\alpha=-\frac{\sqrt{2}}{2}
a pole powierzchni tego trójkąta jest równe
289\sqrt{2} .
Oblicz \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
112 , a tangens
kąta przy podstawie jest równy
\frac{33}{56} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ostrokątnym trójkącie równoramiennym
ABC ,
|AC|=|BC| , wysokość
CD przecięła
wysokość
AE w punkcie
S .
Wysokość
AE dzieli ramię
BC tego trójkąta
w stosunku
|BE|:|EC|=1:2 .
Oblicz sinus kąta EAB .
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Wyznacz stosunek pola powierzchni trójkąta
ADC do pola powierzchni
trójkąta
CSE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=16
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=36\sqrt{2} oraz
|BC|=60 :
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
10 i
14 , a jego
pole powierzchni jest równe
35\sqrt{3} .
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)
Rozwiąż