Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:10 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{25}{2}
B. 5 i \frac{25}{2}
C. 5 i 25
D. 20 i 125
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
39:89 .
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
9 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{7} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
5
i
\frac{12}{13} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
12 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC , w którym:
|AC|=5 ,
|BC|=10 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{25\sqrt{3}}{6} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-20568 ⋅ Poprawnie: 76/65 [116%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta maja długości
a i
b , a jego pole powierzchni jest równe
P . W trójkąt ten wpisano okrąg o promieniu
długości
r .
Wyznacz najmniejszy z sinusów kątów tego trojkąta.
Dane
a=6
b=6
r=\sqrt{3}=1.73205080756888
P=9\sqrt{3}=15.58845726811990
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Wyznacz największy z sinusów kątów tego trojkąta.
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE| .
Dane
|AC|=20
P_{\triangle DBE}:P_{ADEC}=90:390=0.23076923076923
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=8
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
3 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
8 .
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2| .
Odpowiedź:
|O_1O_2|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Na bokach
AB i
AC trójkąta
ABC obrano punkty odpowiednio
M i
L , takie, że
|MB|=2|AM| oraz
|LC|=3|AL| .
Proste
CM i
BL przecięły
się w punkcie
S . Przez punkty
A i
S poprowadzono prostą,
która przecięła bok
BC w punkcie
K . Pole powierzchni trójkąta
ABC jest równe
156 .
Oblicz pola powierzchni trójkątów
AMS ,
MBS ,
ASL i
LSC .
Podaj najmniejsze z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż