W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|,
poprowadzono wysokości CD i BE. Stosunek pól powierzchni
trójkątów ABE i ADC jest równy
P_{ABE}:P_{ADC}=\frac{36}{25}, a obwód tego trójkąta ma długość
32.
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]
«« Punkt D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=3:1. Odcinek
CDjest 4 razy dłuższy od odcinka
DB.
Oblicz \cos\sphericalangle ADC.
Odpowiedź:
\cos\sphericalangle ADC=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30794 ⋅ Poprawnie: 0/1 [0%]
W prostokącie ABCD dane są długości boków |AB|=39
i |AD|=36. Na boku CD zaznaczono punkt
E taki, że |DE|=24, zaś na odcinku EB punkt
M taki, że |EM|=36 (zobacz rysunek).
Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni
trójkąta ABM.
Odpowiedź:
P_{ABM}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość odcinka AM.
Odpowiedź:
|AM|=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
ABM.
Odpowiedź:
R=
\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat