Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{13}{9}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
24:74.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
58 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
5
i
\frac{5}{4} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
10 i
przecinają się pod kątem o mierze
30^{\circ}.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Punkty
M i
N są środkami
boków trójkąta na rysunku i spełniają warunki:
|AM|=8 i
|BN|=14:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
96, a pole
powierzchni tego trójkąta jest równe
2640.
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Trójkąt
ABC jest ostrokątny i równoramienny o
podstawie
AB:
Oblicz P_{ABC}.
Dane
|AB|+|BC|+|AC|=560
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=3\sqrt{3}=5.19615242270663
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD, w którym
|AB|=3 i
|AD|=5, ma miarę
30^{\circ}.
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=48,
b=42 i
c=18:
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)