Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:12. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 3 i 24
|
B. 1 i 6
|
|
C. 18 i 72
|
D. 3 i 6
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
12:20.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
4\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
6 i
12,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
28.
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długość
6 i
8.
Kąt
\gamma zawarty między tymi bokami ma miarę
60^{\circ}.
Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
32, a sinus
kąta przy podstawie jest równy
\frac{3}{5}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB:
Oblicz \sin\sphericalangle DAB.
Dane
k=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=3\sqrt{6}=7.34846922834953
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt, w którym
|AB|=3\sqrt{6},
|BC|=3\sqrt{3},
|AC|=\frac{3\sqrt{6}}{2}+\frac{9\sqrt{2}}{2} i
\alpha=30^{\circ}:
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
5 i
8, a jego
pole powierzchni jest równe
10\sqrt{3}.
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)