Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
9:25 , mogą być równe:
Odpowiedzi:
A. 3:\frac{9}{5}
B. 3:\frac{25}{3}
C. 6:\frac{27}{5}
D. 5:\frac{9}{5}
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
4:\pi , a średnica tego koła ma długość
6 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
3\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
2 i
20 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
40 , a jego wysokość długość
21 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20745 ⋅ Poprawnie: 43/196 [21%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Odcinki
AM i
MB
na rysunku maja równą długość, a bok
AC ma długość
10 :
Wiedząc, że P_{\triangle ABC}=50\sqrt{3} , oblicz
P_{\triangle ABM} .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
8 i
26 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{65}{4} . Pole powierzcni
tego trójkąta jest równe
96 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AC|:|AB|=13:84 , Punkt
D należy do
przeciwprostokątnej
BC oraz
|CD|:|DB|=8:3 .
Punkt
E należy do przyprostokątnej
AB i
ED\perp BC .
Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni
trójkąta EBD .
Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=4
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20738 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» W trójkącie ostrokątnym
ABC dane są:
długość boku
|AB|=38 oraz tangens kąta przy
wierzchołku
C :
\tan\gamma=\frac{4}{3} .
Oblicz długość promienia koła opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=48 ,
b=42 i
c=18 :
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż