Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
4:25 , mogą być równe:
Odpowiedzi:
A. 4:\frac{12}{5}
B. 2:\frac{25}{2}
C. 2:\frac{4}{5}
D. 15:4
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
2:\pi , a średnica tego koła ma długość
8 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
6 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
8 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
96 , a jego wysokość długość
20 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC , w którym:
|AC|=5 ,
|BC|=10 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{25\sqrt{3}}{6} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym
P i kącie między ramionami o mierze
45^{\circ} .
Podaj długość ramienia tego trójkąta.
Dane
P=4\sqrt{2}=5.65685424949238
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj długość podstawy tego trójkąta.
Odpowiedź:
a=
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Odcinki
DE ,
FG i
AB
są równoległe, a pola wielokątów
DEC ,
FGED i
ABGF
pozostają w stosunku
a:b:c .
Oblicz \frac{|DE|}{|FG|} .
Dane
a=1
b=3
c=12
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{11}=13.26649916142160
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD , w którym
|AB|=3 i
|AD|=5 , ma miarę
60^{\circ} .
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30794 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W prostokącie
ABCD dane są długości boków
|AB|=13
i
|AD|=12 . Na boku
CD zaznaczono punkt
E taki, że
|DE|=8 , zaś na odcinku
EB punkt
M taki, że
|EM|=12 (zobacz rysunek).
Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni
trójkąta ABM .
Odpowiedź:
P_{ABM}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość odcinka
AM .
Odpowiedź:
Podpunkt 11.3 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
ABM .
Odpowiedź:
Rozwiąż