Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 9 cm2 i 20 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 8, a kąt wycinka tego koła ma miarę 50^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 16 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{5}{4} i 12 oraz kącie ostrym o mierze 45^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Punkty M i N są środkami boków trójkąta na rysunku i spełniają warunki: |AM|=8 i |BN|=14:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Pole powierzchni trójkąta jest równe 6, a promień okręgu wpisanego w ten trójkąt ma długość 1.

Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość najkrótszej wysokości tego trójkąta.

Odpowiedź:
h_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=13
|AB|=10
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=6\pi=18.84955592153876
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Oblicz długość środkowej trójkąta o bokach długości 11, 13 i 16, poprowadzonej do najdłuższego boku.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 5 i 6, a jego pole powierzchni jest równe \frac{15\sqrt{3}}{2}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm