Podgląd testu : lo2@sp-17-wielomiany-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 58/125 [46%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(5m^2-20)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 454/570 [79%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-2 daje resztę
6.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wyrażenie
(2x+3)^3-(x-8)(x+8)
zapisane w postaci sumy algebraicznej ma postać
8x^3+mx^2+nx+91,
gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Zapisz wyrażenie
(3x-5)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1.
Podaj liczby b_1 i c_1.
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(3\sqrt{5}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)