Podgląd testu : lo2@sp-17-wielomiany-pp-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^6+5x^2+12x-3
|
B. 4x^3+12x^2-3
|
|
C. 4x^3+5x^2+12x-3
|
D. 5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-2x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 4.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-5.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-3x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wyrażenie
(4x+2)^3-(x-2)(x+2)
zapisane w postaci sumy algebraicznej ma postać
64x^3+mx^2+nx+12,
gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Zapisz wyrażenie
(3x-5)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1.
Podaj liczby b_1 i c_1.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{2}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)