Podgląd testu : lo2@sp-17-wielomiany-pp-1
Zadanie 1. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11471
|
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11556
|
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3
|
B. 5x^2+12x-3
|
C. 4x^3+12x^2-3
|
D. 4x^3+5x^2+12x-3
|
Zadanie 3. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11682
|
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-4x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11683
|
Podpunkt 4.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-14.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11679
|
Podpunkt 5.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11673
|
Podpunkt 6.1 (1 pkt)
Iloczyn wyrażenia
4x-1 przez wyrażenie
-16x^2-4x-1
jest równy
ax^3+bx+c, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i
c.
Odpowiedzi:
Zadanie 7. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11674
|
Podpunkt 7.1 (1 pkt)
« Wyrażenie
27x^3+y^3 jest równe
\left(3x+ay)\left(bx^2+cxy+y^2\right).
Podaj liczby a, b i
c.
Odpowiedzi:
Zadanie 8. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11678
|
Podpunkt 8.1 (1 pkt)
Wyrażenie
(\sqrt{3}-x)(x^2+3+\sqrt{3}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi: