Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+5)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 5x^2+12x-3
|
B. 4x^3+5x^2+12x-3
|
|
C. 4x^6+5x^2+12x-3
|
D. 4x^3+12x^2-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+2x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+3x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{7}-x)(x^2+7+\sqrt{7}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-3x^2-\frac{1}{2}m^2x-10m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
3x^3+\frac{3}{2}x^2-75x-\frac{75}{2}
jest podzielny przez dwumian
P(x)=x-5.
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Wielomian
W(x)=-3x^3+(3a+b+10)x^2-(4a+9b+21)x+30 jest podzielny przez
wielomian
P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian
Q(x)=x^2-4x+6.
Wyznacz liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=-16x^3-48x^2-36x
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2, jest równy
9.
Podaj najmniejszą i największą możliwą wartość liczby a.
Odpowiedzi: