Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+3)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+12x^2-3
|
B. 4x^6+5x^2+12x-3
|
|
C. 5x^2+12x-3
|
D. 4x^3+5x^2+12x-3
|
|
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-8.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{2}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3+3x^2+mx-5
przy dzieleniu przez dwumian
x-1 daje resztę
-\frac{5}{2}.
Oblicz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m+2)x^2+(4m+10)x-12
jest podzielny przez dwumian
P(x)=x+2.
Wyznacz parametr m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^3-2x^2-3x+6=0.
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«Wielomiany
W(x)-F(x), gdzie
W(x)=2x^3+(a-4)x^2+5x-3 i
F(x)=x^3-5x^2+(b-2)x+4, oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
3 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
40.
Wyznacz te liczby.
Odpowiedzi: