Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m+4)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^3+5x^2+12x-3 D. 5x^2+12x-3
Zadanie 3.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2-5x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-8x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn wyrażenia 4x-3 przez wyrażenie -16x^2-12x-9 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W wyniku podzielenia wielomianu W(x)= -5x^3+8x^2+2x-10 przez dwumian P(x)=x-1, otrzymamy wynik dzielenia Q(x)=ax^2+bx+c i resztę r.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj resztę r z tego dzielenia.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pierwiastkiem wielomianu W(x)= -6x^3-4x^2+24x+16 jest liczba 2. Wyznacz pozostałe pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek całkowity tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b+17)x^2-(4a+9b-31)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyrażenie \frac{5\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 2, jest równy 64.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm