Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(3m^2-24)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+12x^2-3
|
B. 4x^3+5x^2+12x-3
|
|
C. 4x^6+5x^2+12x-3
|
D. 5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+3x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Iloczyn wyrażenia
2x-4 przez wyrażenie
-4x^2-8x-16
jest równy
ax^3+bx+c, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wielomian
W(x)=
-8x^4+10x^3-11x^2+2x+1
jest podzielny przez dwumian
P(x)=-2x+1, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d.
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3-\frac{25}{6}x^2-\frac{178}{3}x+10.
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=10x^3+15x^2+25x+20 jest podzielny przez
wielomian
P(x)=ax+b, a wynikiem tego dzielenia jest wielomian
Q(x)=2x^2+x+4.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=-12x^3+0x^2
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
65 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)