Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-12+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{7}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=
-4x^4+21x^3-13x^2+6x-1
jest podzielny przez dwumian
P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
-5x^3-\frac{5}{2}x^2+125x+\frac{125}{2}
jest podzielny przez dwumian
P(x)=x-5.
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^3+9x^2-20x-180=0.
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=-8x^3-24x^2
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2, jest równy
576.
Podaj najmniejszą i największą możliwą wartość liczby a.
Odpowiedzi: