Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(11m^2-22)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+5x^2+12x-3
|
B. 4x^6+5x^2+12x-3
|
|
C. 4x^3+12x^2-3
|
D. 5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+3x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Liczba
p jest resztą z dzielenia wielomianu
W(x)=6x^3-4x^2 przez
x+3,
a liczba
q resztą z dzielnia tego wielomianu przez
x-3.
Oblicz |2p-q|.
Odpowiedź:
|2p-q|=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Oblicz sumę wszystkich pierwiastków wielomianu
P(x)=(18x^3-x^2-5x)(x^2-11).
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
-x^3+3x^2+40x-120=0.
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{7\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x}, gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
4 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
-4.
Wyznacz te liczby.
Odpowiedzi: