Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-4

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11551  
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(6m^2-12)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11556  
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 4x^6+5x^2+12x-3
C. 5x^2+12x-3 D. 4x^3+12x^2-3
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11681  
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę 14.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11679  
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-5x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11678  
Podpunkt 5.1 (1 pkt)
 Wyrażenie (\sqrt{7}-x)(x^2+7+\sqrt{7}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20972  
Podpunkt 6.1 (1 pkt)
 « Wielomian W(x)=x^3+m^2x^2+\frac{5}{2}x+\frac{1}{2} przy dzieleniu przez wielomian P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}} daje resztę r=\frac{3}{8}.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20999  
Podpunkt 7.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= x^3-\frac{73}{6}x^2+34x-\frac{16}{3}.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20989  
Podpunkt 8.1 (2 pkt)
 Wielomian W(x)=(8x^3-27)(3x-5) jest podzielny przez wielomian P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20964  
Podpunkt 9.1 (1 pkt)
 Wyrażenie \frac{3\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21009  
Podpunkt 10.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 259 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm