Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-10)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3 B. 4x^3+5x^2+12x-3
C. 4x^6+5x^2+12x-3 D. 5x^2+12x-3
Zadanie 3.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2-x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn wyrażenia 2x-3 przez wyrażenie -4x^2-6x-9 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3-3x^2-\frac{1}{2}m^2x-2m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= 2x^3+14x^2+30x+18.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^3+7x^2-5x-35=0.

Podaj rozwiązanie wymierne tego równania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wielomiany W(x)-F(x), gdzie W(x)=x^3+(a-4)x^2+3x+1 i F(x)=2x^2+(b-1)x-4, oraz H(x)=x^3-7x^2+8x+5 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
  Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie jest o 6 osób więcej niż w pierwzej, zaś w trzeciej grupie o 11 osób więcej niż w pierwszej. Iloczyn liczby uczniów grupy drugiej i trzeciej jest o 86 większy od sześcianu liczby uczniów pierwszej grupy.

Ilu uczniów liczy ta klasa?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm