Podgląd testu : lo2@sp-17-wielomiany-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+5+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+5x^2+12x-3
|
B. 4x^6+5x^2+12x-3
|
|
C. 4x^3+12x^2-3
|
D. 5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+2 daje resztę
-42.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(4x+3)^3-(x-5)(x+5)
zapisane w postaci sumy algebraicznej ma postać
64x^3+mx^2+nx+52,
gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=-8x^3+2x^2-7x-5
jest podzielny przez dwumian
P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-3x^3-13x^2+42x+72
jest liczba
3.
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(8x^3-27)(7x+1) jest podzielny przez
wielomian
P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz liczby a, b i c.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«Wielomiany
W(x)-F(x), gdzie
W(x)=2x^3+(a-3)x^2+5x-3 i
F(x)=x^3-5x^2+(b-5)x+4, oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
4 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
60.
Wyznacz te liczby.
Odpowiedzi: