Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+4+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3 D. 5x^2+12x-3
Zadanie 3.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 13.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(2\sqrt{2}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x-3.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pierwiastkiem wielomianu W(x)= -3x^3-2x^2+23x+30 jest liczba 3. Wyznacz pozostałe pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek całkowity tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie -x^3-7x^2+32x+224=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wielomiany W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz P(x)=-2x^3+5x^2 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
  Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie jest o 9 osób więcej niż w pierwzej, zaś w trzeciej grupie o 11 osób więcej niż w pierwszej. Iloczyn liczby uczniów grupy drugiej i trzeciej jest o 131 większy od sześcianu liczby uczniów pierwszej grupy.

Ilu uczniów liczy ta klasa?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm