Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(5m^2-30)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^3+5x^2+12x-3
C. 4x^3+12x^2-3 D. 4x^6+5x^2+12x-3
Zadanie 3.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-6x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-8x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie (2x-3)^2x+(3-2x)x^2-(2x-3) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 6.  4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dany jest wielomian P(x)=x^3+ax^2+bx+1. Wiadomo, że P(-3)=-29 oraz, że reszta z dzielenia wielomianu P(x) przez dwumian x+4 jest równa -79.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)= -2x^3+11x^2+5x-50 jest podzielny przez dwumian P(x)=x-5. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^3+4x^2-2x-8=0.

Podaj rozwiązanie wymierne tego równania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «Wielomiany W(x)-F(x), gdzie W(x)=2x^3+(a-5)x^2+5x-3 i F(x)=x^3-5x^2+(b-4)x+4, oraz H(x)=x^3+2x^2+4x-7 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 3 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy -8.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm