Podgląd testu : lo2@sp-17-wielomiany-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+5+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
13 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(-4)=9 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+3 jest
równa
19 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3+17x^2+96x+180 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wielomian
W(x)=-10x^3-3x^2+ax+b jest podzielny przez
wielomian
P(x)=1-2x , a wynikiem tego dzielenia jest wielomian
Q(x)=5x^2+4x+5 .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=-8x^3+16x^2-8x
są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.8 litrów jest kwadrat, którego krawędź jest
o
18 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Rozwiąż