Podgląd testu : lo2@sp-17-wielomiany-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-2+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3
B. 4x^3+5x^2+12x-3
C. 4x^6+5x^2+12x-3
D. 4x^3+12x^2-3
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-11 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+8x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyrażenie
(3x+4)^3-(x-2)(x+2)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+68 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(-4)=-111 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+2 jest
równa
-27 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie pierwiastki wielomianu
P(x)=-3x^3+5x^2+12x-20 .
Podaj najmniejszy z jego pierwiastków.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Podaj największy z jego pierwiastków.
Odpowiedź:
Zadanie 8. 3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^3+x^2-10x-10=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=-8x^3+40x^2-50x
są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
9 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
11 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
39
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż