Podgląd testu : lo2@sp-17-wielomiany-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-2)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-3x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Zapisz wyrażenie
(2x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-x^3-2x^2+x-1
przez dwumian
P(x)=x-1 , otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie pierwiastki wielomianu
P(x)=-3x^3+2x^2+6x-4 .
Podaj najmniejszy z jego pierwiastków.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Podaj największy z jego pierwiastków.
Odpowiedź:
Zadanie 8. 3 pkt ⋅ Numer: pp-20976 ⋅ Poprawnie: 104/194 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
4x^3+2x^2-12x-6=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«Wielomiany
W(x)-F(x) , gdzie
W(x)=2x^3+(a-3)x^2+5x-3 i
F(x)=x^3-5x^2+(b-2)x+4 , oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
8 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
12 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
96
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż