Podgląd testu : lo2@sp-17-wielomiany-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+6+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3
B. 5x^2+12x-3
C. 4x^3+5x^2+12x-3
D. 4x^6+5x^2+12x-3
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-8 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{7}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=-4x^3-14x^2+2x+4
jest podzielny przez dwumian
P(x)=x+\frac{1}{2} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wielomian
W(x) jest stopnia trzeciego i przy
dzieleniu przez dwumian
x-2 daje resztę
-72 . Pierwiastkami tego wielomianu są liczby
-2 ,
4 oraz
5 .
Oblicz W(-1) .
Odpowiedź:
W(1)=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^3-5x^2-6x+30=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{5\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x} , gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3 ,
5 i
2 . Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o
1818
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
Rozwiąż