Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+8+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3-p+1
B. 2(p+1)^3+p-1
C. 2(p-1)^3+p-1
D. 2(p+1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
64x^3+125y^3 jest równe
\left(4x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+2x^2-80 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wielomian
W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3
przy dzieleniu przez dwumian
x+1 daje resztę
-4 .
Podaj najmniejsze możliwe a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
-5 ,
6 i
8 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
504 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 7. 3 pkt ⋅ Numer: pp-20976 ⋅ Poprawnie: 104/194 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż równanie
2x^3+x^2-6x-3=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
4 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
224 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20219 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Wyznacz resztę z dzielenia wielomianu
W(x)=x^{2017}-2x^{2016}+2x^{2015}-1 przez
wielomian
P(x)=x^3-x .
Zapisz resztę w postaci R(x)=ax^2+bx+c . Podaj
a+b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b+c .
Odpowiedź:
b+c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m , dla
których równanie
x^2-4(m+5)x-m^3-9m^2-14m+28=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m , dla
których to równanie dwa różne pierwiastki rzeczywiste takie, że
\left(x_1-x_2\right)^2 \lessdot 8m+48 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m+9)x^2+(m+11)^2=0
ma dwa rozwiązania
x_1 i
x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1 .
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż