Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-8x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(2x-6)^2x+(6-2x)x^2-(2x-6) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4-2x^2-35 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2-3x-\frac{9}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3-\frac{7}{6}x^2-\frac{71}{6}x+2 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz te wartości parametrów
m i
n , dla których wielomian
P(x)=x^9+\frac{m+8}{4}x+2n+5 jest podzielny przez
wielomian
Q(x)=1-x^2 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
1 , jest równy
144 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20201 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wielomian
P(x)=-x^3-2x+11 podzielony przez
dwumian
x-m daje resztę z przedziału
(-1,+\infty) . Wyznacz możliwe wartości parametru
m .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców
przedziałów, które są liczbami.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-9)x+m^2-14m+45=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3-30m^2+150m-253 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+2(m-13)x^2+4m^2-64m+256=0
ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Podaj największy z końców tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż