Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+10+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
10 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(2x-3)^2x+(3-2x)x^2-(2x-3) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wielomian
W(x)=25x^3+ax^2+16x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=
-10x^4+7x^3+7x^2-2x-1
jest podzielny przez dwumian
P(x)=-2x+1 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-3x^3+x^2+40x-48
jest liczba
3 .
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
-x^3+5x^2+32x-160=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
3 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
280 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-21022 ⋅ Poprawnie: 50/33 [151%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-6x^2+(8m-61)x+10m-70=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30142 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wyznacz wszystkie wartości parametrów
m,n ,
dla których wielomian
W(x)=5x^3+mx^2-31x+n jest podzielny przez dwumian
x+3 oraz zachodzi warunek
W(2)=0 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
Dla wyznaczonych wartości parametrów
m,n
rozwiąż nierówność
W(x) \lessdot 0 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj środek najmiejszego z tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+2mx^2+4mx+8=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż