Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
1 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
5x-2 przez wyrażenie
-25x^2-10x-4
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja
g(x)=8x^3-5x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(\frac{5}{8},+\infty\right)
B. x\in(-\infty,0)\cup\left(0,\frac{5}{8}\right)
C. x\in\left(0,\frac{5}{8}\right)
D. x\in\left(-\infty,\frac{5}{8}\right)
Zadanie 5. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2+0x-\frac{1}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-3x^3-26x^2-32x+96
jest liczba
-4 .
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wielomian
W(x)=10x^3+21x^2+28x+32 jest podzielny przez
wielomian
P(x)=ax+b , a wynikiem tego dzielenia jest wielomian
Q(x)=2x^2+x+4 .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
684 .
Krawędź drugiego z tych sześcianów jest o
1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Liczba
-1 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx-3 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Wielomian
W(x)=x^5+(a+2)x^4-bx^3+bx^2+(c+3)x+6
dzieli się bez reszty przez wielomian
P(x)=x^3-7x+6 .
Podaj a+b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m-3)x^2+(m-1)^2=0
ma dwa rozwiązania
x_1 i
x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1 .
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż