Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 13.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wielomian W(x)=ax^3-60x^2+25x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3+12x^2-\frac{1}{2}m^2x+8m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)= 5x^3-\frac{45}{2}x^2+\frac{65}{2}x-15 jest podzielny przez dwumian P(x)=x-2. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wielomian W(x)=2x^4-8x^3+px^2+7x+q dzieli się przez wielomian P(x)=-2x^2+2x+1. Wyznacz p i q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
  Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie jest o 9 osób więcej niż w pierwzej, zaś w trzeciej grupie o 13 osób więcej niż w pierwszej. Iloczyn liczby uczniów grupy drugiej i trzeciej jest o 127 większy od sześcianu liczby uczniów pierwszej grupy.

Ilu uczniów liczy ta klasa?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20232 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wielomian P(x)=2x^4-x^3+2x^2+0x+3 przedstaw w postaci \left(2x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right), gdzie b_1,c_1,b_2,c_2\in\mathbb{C}.

Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
min(b_1, b_2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1, b_2)= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Wielomian W(x)=9x^3+bx^2+cx+60 jest podzielny przez trójmian P(x)=9x^2-51x+30.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m suma wszystkich pierwiastków wielomianu x^3+(m^2+16m+62)x^2-(2m^2+32m+132)x+8=0 ma wartość równą -2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm