Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3
B. 4x^3+5x^2+12x-3
C. 5x^2+12x-3
D. 4x^6+5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3+p-1
B. 2(p+1)^3-p+1
C. 2(p+1)^3+p-1
D. 2(p-1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
3x-1 przez wyrażenie
-9x^2-3x-1
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest wielomian
Q(x)=221x^3-px^2-qx+10 , gdzie
p,q\in\mathbb{C} .
Pierwiastkiem wielomianu Q(x) nie może być liczba:
Odpowiedzi:
A. \frac{5}{13}
B. \frac{2}{13}
C. \frac{2}{17}
D. \frac{5}{6}
Zadanie 5. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+2x^2-\frac{1}{2}m^2x+2m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
-7 ,
2 i
3 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-144 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-21001 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomiany
W(x)=(2x+b)(x^2+3x+1) ,
P(x)=(ax+3)(x+1)^2 oraz
H(x)=6x^3+53x^2+12x-1 ,
spełniają warunek
W(x)-P(x)=H(x) .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=12.5 litrów jest kwadrat, którego krawędź jest
o
5 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20178 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Wielomian
Q(x)=ax^3+bx^2+cx+d dla argumentu
0 przyjmuje wartość
5 .
Liczba
x_1=-5 jest jego pierwiastkiem, zaś liczba
x_2=1 jest pierwiastkiem dwukrotnym wielomianu
Q(x) .
Wyznacz b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b-7)x^2+(2a+5b-26)x-8 .
Wyznacz parametry a i b .
Odpowiedzi:
Podpunkt 10.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dany jest wielomian
W(x)=(m-3)x^3+x^2+(m^2-6m)x+m-3 . Jednym z
pierwiastków tego wielomianu jest liczba
1 .
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Jednym z pierwiastków tego wielomianu jest liczba
1 ,
a jeden z pozostałych pierwiastków należy do zbioru
\mathbb{W}-\mathbb{C} .
Wyznacz ten pierwiastek.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż