Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m+12)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p+1)^3+p-1
C. 2(p-1)^3-p+1 D. 2(p-1)^3+p-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (4x-2)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+7)^2(x-7)(x-8)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m+6)^3x^8+(m^2+12m+35)x^5+2(m+7)x^2+(m+6)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz wszystkie pierwiastki wielomianu P(x)=-3x^3+6x^2+9x-18.

Podaj najmniejszy z jego pierwiastków.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z jego pierwiastków.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 15/19 [78%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomiany W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz P(x)=+0x^3+0x^2 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=16.9 litrów jest kwadrat, którego krawędź jest o 1 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
» Wyznacz resztę z dzielenia wielomianu W(x)=x^{2017}-2x^{2016}+2x^{2015}-1 przez wielomian P(x)=x^3-x.

Zapisz resztę w postaci R(x)=ax^2+bx+c. Podaj a+b.

Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest wielomian W(x)=(m)x^3-(m+10)x^2-(m+3)x+m+7, który dzieli się bez reszty przez x+1. Wyznacz te wartości parametru m, dla których wielomian ten ma dokładnie dwa pierwiastki.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m+4)x^2+(3m^2+24m+47)x-9m^2-52m-60. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm