Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o 6 osób więcej niż w pierwzej, zaś w trzeciej
grupie o 10 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o 76
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-21024 ⋅ Poprawnie: 41/33 [124%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(x^2-5x+4)\left[x^2+(m-8)x-2m+13\right]=0
ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszy z końców liczbowych niecałkowitych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
« Dana jest funkcja
f(x)=|x^3-2\sqrt{3}x^2-x+2\sqrt{3}|, której wykres
przesunięto o wektor
\vec{u}=[-2\sqrt{3}, -\sqrt{6}],
w wyniku czego otrzymano wykres funkcji g. Dla jakich
argumentów funkcja g osiąga wartość najmniejszą i
ile ona jest równa?
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
g_{min}(x)=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat