Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3, 5 i 2. Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o 1050
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20208 ⋅ Poprawnie: 0/0
Liczby -2 i 2 są
pierwiastkami wielomianu W(x), dla którego zachodzi
równość \text{st}.W(x)=4. Wielomian
W(x) dzieli się bez reszty przez trójmian
P(x)=x^2-\frac{3}{2}x+\frac{1}{2}, a do jego wykresu należy punkt
o współrzędnych \left(-1,-18\right).
Wyznacz W(4).
Odpowiedź:
W(4)=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz pozostałe pierwiastki tego wielomianu. Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=x^3-3(m+1)x^2+(3m^2+6m+2)x-9m^2+2m+15.
Wykres tego wielomianu, po przesunięciu o wektor
[-3,0], przechodzi przez początek układu
współrzędnych.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat