Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+2 daje resztę
-122 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{2}-x)(x^2+2+\sqrt{2}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wielomian
W(x)=25x^3+ax^2+64x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (2 pkt)
Dany jest wielomian
P(x)=x^4+ax^3+bx^2+25x-13
, który przy dzieleniu przez każdy z dwumianów
x-1 ,
x-3 i
x+4
daje tę samą resztę. Oblicz
a i
b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3-x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=11 i
x_3-x_1=14 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 147/310 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
x^3-2x^2+6x-12=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
2 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
18 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21019 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m+8)x^2+m^2+12m+27=0
ma trzy różne rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wielomian
P(x)=3x^3+(m-2)x^2+x+m+14 dzieli się bez
reszty przez wielomian
Q(x)=x-1 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz sumę wszystkich pierwiastków całkowitych tego wielomianu.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30845 ⋅ Poprawnie: 45/33 [136%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-(2m+12)x^2+(2m^2+23m+66)x=0
ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż