Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 454/538 [84%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3
B. 4x^3+12x^2-3
C. 4x^3+5x^2+12x-3
D. 5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-1 daje resztę
2 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(5x-6)^2x+(6-5x)x^2-(5x-6) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{37}+x^{33}+x^{29}+x^{25}+x^{21}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x-1
B. 3x+1
C. 6x
D. 3x-1
Zadanie 5. 2 pkt ⋅ Numer: pp-20992 ⋅ Poprawnie: 21/36 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=
-2x^4+7x^3-4x^2+x-6
jest podzielny przez dwumian
P(x)=2x-3 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
6x^3-20x^2-18x+8
jest liczba
4 .
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20191 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz resztę z dzielenia wielomianu
W(x)=x^3+(m-1)x^2+2(-1-m)(m+3)x przez dwumian
P(x)=x-(3+m) .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
532 .
Krawędź drugiego z tych sześcianów jest o
2 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21013 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Liczba
-2 jest pierwiastkiem dwukrotnym wielomianu
W(x)=x^3+mx^2+nx-8 .
Wyznacz wartości parametrów m i n .
Odpowiedzi:
Zadanie 10. 4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest wielomian
W(x)=(m-4)x^3-(m+6)x^2-(m-1)x+m+3 , który dzieli się
bez reszty przez
x+1 . Wyznacz te wartości
parametru
m , dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dla jakich wartości parametru
m równanie
x^2+(m+3)x+m+7=0 ma mniej niż dwa
rozwiązania rzeczywiste?
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (2 pkt)
Wyznacz te wartości parametru
m , dla których suma
trzecich potęg dwóch różnych pierwiastków tego równania jest równa
64 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Rozwiąż