Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3
B. 5x^2+12x-3
C. 4x^6+5x^2+12x-3
D. 4x^3+12x^2-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-2 daje resztę
-66 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{3}-x)(x^2+3+\sqrt{3}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+5x^2+7x+6 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (0,2)
B. (1,3)
C. (-2,-1)
D. (-3,-2)
Zadanie 5. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+5x^2-\frac{1}{2}m^2x-10m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
-7 ,
-2 i
6 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-42 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 7. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
x^3-4x^2-8x+32=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=1.6 litrów jest kwadrat, którego krawędź jest
o
16 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20182 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dziedziną funkcji
h(x)=\sqrt{\left(x^2+2bx-ax-2ab\right)\left(x^2+4x-21\right)}
jest zbiór
\mathbb{R} .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b-3)x^2+(2a+5b-21)x-8 .
Wyznacz parametry a i b .
Odpowiedzi:
Podpunkt 10.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dla jakich wartości parametru
m suma wszystkich
pierwiastków wielomianu
x^3+(m^2+6m+7)x^2-(2m^2+12m+22)x+8=0
ma wartość równą
-2 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż