« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(m-4)x^3=x(2x-m+3)
ma trzy rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Największy z końców tych przedziałów jest liczbą postaci
\frac{a+\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z} i
b jest liczbą pierwszą.
Podaj liczby a, b i c.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(m-9)x^2+m^2-13m+36=0
ma dokładnie dwa rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszy z końców tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat