» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2+3x-6) oraz
resztę równą -48.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Suma objętości trzech sześcianów jest równa 216.
Krawędź drugiego z tych sześcianów jest o 1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20208 ⋅ Poprawnie: 0/0
«« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że
liczba -1 jest pierwiastkiem dwukrotnym tego
wielomianu oraz że W(x) jest on podzielny przez dwumian
x-4. Oblicz współczynniki b,
c, d.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiąż nierówność W(x-1) \leqslant 0.
Podaj największą liczbę, która spełnia tę nierówność.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0