Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-12)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 13.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (2x+3)^3-(x-3)(x+3) zapisane w postaci sumy algebraicznej ma postać 8x^3+mx^2+nx+36, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wielomian W(x)=ax^3+24x^2+4x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m-6)^3x^8+(m^2-12m+35)x^5+2(m-5)x^2+(m-6)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz sumę wszystkich pierwiastków wielomianu P(x)=(18x^3+5x^2-2x)(x^2-12).
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomiany W(x)=2ax(2x-b)^2 oraz P(x)=-40x^3+40x^2-10x są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 2.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20236 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wielomian W(x)=-3x^3+mx^2+27x+108 przy dzieleniu przez dwumian x+1 daje resztę 72.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30164 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wielomian P(x)=3x^3+(m-2)x^2-9x+m-16 dzieli się bez reszty przez wielomian Q(x)=x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz sumę wszystkich pierwiastków całkowitych tego wielomianu.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+2(m-3)x^2+4m^2+16m+16=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm