Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(4m^2-20)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-2 daje resztę
-74 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(2x-7)^2x+(7-2x)x^2-(2x-7) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+4x^2+4x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+1 dla argumentu
2 przyjmuje wartość
9
oraz przy dzieleniu przez dwumian
x-3 daje
resztę
19 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=-2x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian
P(x)=x^3-4x^2+x+6 . Suma współczynników wielomianu
W(x) jest równa
-72 ,
a reszta z dzielenia wielomianu
W(x) przez dwumian
Q(x)=x+2 jest równa
240 .
Wyznacz wartości współczynników b , c i d .
Odpowiedzi:
Zadanie 7. 3 pkt ⋅ Numer: pp-20976 ⋅ Poprawnie: 104/194 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż równanie
3x^3+x^2-6x-2=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
1 , jest równy
900 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Liczba
-4 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx+128 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m , dla
których równanie
x^2-4(m-4)x-m^3+18m^2-95m+154=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m , dla
których to równanie dwa różne pierwiastki rzeczywiste takie, że
\left(x_1-x_2\right)^2 \lessdot 8m-24 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dany jest wielomian
W(x)=(m-6)x^3+x^2+(m^2-12m+27)x+m-6 . Jednym z
pierwiastków tego wielomianu jest liczba
1 .
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Jednym z pierwiastków tego wielomianu jest liczba
1 ,
a jeden z pozostałych pierwiastków należy do zbioru
\mathbb{W}-\mathbb{C} .
Wyznacz ten pierwiastek.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż