Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-16)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{7}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{31}+x^{27}+x^{23}+x^{19}+x^{15}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x
B. 3x+1
C. 3x-1
D. 6x+1
Zadanie 5. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2+0x-\frac{11}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
-4 ,
1 i
3 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-48 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 7. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
x^3-3x^2-24x+72=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.7 litrów jest kwadrat, którego krawędź jest
o
3 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20219 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Wyznacz resztę z dzielenia wielomianu
W(x)=x^{2017}-2x^{2016}+2x^{2015}-1 przez
wielomian
P(x)=x^3-x .
Zapisz resztę w postaci R(x)=ax^2+bx+c . Podaj
a+b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b+c .
Odpowiedź:
b+c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Wielomian
W(x)=-9x^3+bx^2+cx-72 jest podzielny przez
trójmian
P(x)=-9x^2+33x-18 .
Podaj wartość parametru b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj wartość parametru
c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
x^7-3(m-9)x^4+(2m^2-36m+166)x=0 ma trzy rozwiązania
rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma
trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej
16 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż