Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 1.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 5x-2 przez wyrażenie -25x^2-10x-4 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja g(x)=8x^3-5x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(\frac{5}{8},+\infty\right) B. x\in(-\infty,0)\cup\left(0,\frac{5}{8}\right)
C. x\in\left(0,\frac{5}{8}\right) D. x\in\left(-\infty,\frac{5}{8}\right)
Zadanie 5.  2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wielomian W(x)=x^3+m^2x^2+0x-\frac{1}{8} przy dzieleniu przez wielomian P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}} daje resztę r=\frac{3}{8}.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwiastkiem wielomianu W(x)= -3x^3-26x^2-32x+96 jest liczba -4. Wyznacz pozostałe pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek całkowity tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=10x^3+21x^2+28x+32 jest podzielny przez wielomian P(x)=ax+b, a wynikiem tego dzielenia jest wielomian Q(x)=2x^2+x+4.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 684. Krawędź drugiego z tych sześcianów jest o 1 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Liczba -1 jest pierwiastkiem wielomianu H(x)=x^4+bx^3+cx^2+dx-3 o krotności trzy.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wielomian W(x)=x^5+(a+2)x^4-bx^3+bx^2+(c+3)x+6 dzieli się bez reszty przez wielomian P(x)=x^3-7x+6.

Podaj a+b.

Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+(m-3)x^2+(m-1)^2=0 ma dwa rozwiązania x_1 i x_2 takie, że \frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm