Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3
B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3
D. 5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Wielomian
W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian
x-
\frac{m}{2}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A. 4\sqrt{2}
B. 2\sqrt{2}
C. 6\sqrt{2}
D. 2\sqrt{6}
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(3x+2)^3-(x-2)(x+2)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+12 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wielomian
W(x)=ax^3-8x^2+16x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-x^3-2x^2-x+5
przez dwumian
P(x)=x-1 , otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+13x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=3 i
x_3-x_1=5 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyrażenie
\frac{3\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x} , gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
9 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
13 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
157
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20471 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Liczba
n jest największą liczbą naturalną, dla
której liczba
\frac{n-5}{30\sqrt{2}} należy do zbioru
rozwiązań nierówności
(x^2-10x)(x^2+10x)\lessdot 0 .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-6)x+m^2-8m+12=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3-12m^2+24m-19 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(9-m)x-2m+2 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(9-m)x-2m+2
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż