Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(2m^2-4)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę 54.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{7}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+8)^2(x+7)(x+2)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Wielomian W(x)=x^3+7x^2+mx+6 przy dzieleniu przez dwumian x+1 daje resztę \frac{19}{2}.

Oblicz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Wyznacz wszystkie pierwiastki wielomianu W(x) wiedząc, że przy dzieleniu przez dwumian x-1 wielomian ten daje iloraz równy 2(x^2+2x-7) oraz resztę równą -32.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20189 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz te wartości parametru m, dla których wielomian P(x)=2x^3-(m+5)x^2+(m^2-6mm+15)x+6 jest podzielny przez dwumian Q(x)=x-m+2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 4.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wielomian W(x) spełnia warunki: W(1)=5, W(-2)=2 i przy dzieleniu przez dwumian x+9 daje resztę -5. Jaką resztę daje wielomian W(x) przy dzieleniu przez wielomian P(x)=x^3+10x^2+7x-18?
Zapisz resztę w postaci R(x)=a_1x^2+b_1x+c_1.

Podaj a_1.

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest wielomian W(x)=x^3+px^2+qx+15, który dzieli się przez dwumian x-1, a przy dzieleniu przez dwumian x+1 daje resztę 32.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Rozwiąż nierówność W(x)\geqslant 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja f(x)=|x^3-3\sqrt{3}x^2-x+3\sqrt{3}|, której wykres przesunięto o wektor \vec{u}=[-3\sqrt{3}, -\sqrt{3}], w wyniku czego otrzymano wykres funkcji g. Dla jakich argumentów funkcja g osiąga wartość najmniejszą i ile ona jest równa?

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
g_{min}(x)= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejszy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm