«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{3}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.3\sqrt{3}
B.3\sqrt{6}
C.3\sqrt{2}
D.9\sqrt{2}
Zadanie 3.1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Dany jest wielomian W(x)=
(x-3)\left[x^2+(p-4)x-4p+9\right].
Przedział (a,b) jest zbiorem tych wszystkich wartości parametru
p, dla których wielomian ten ma tylko jeden pierwiastek o krotności
jeden i nie posiada pierwiastków o innych krotnościach.
Podaj liczby a i b.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Dla p\in\{p_1,p_2,p_3\}, gdzie p_1\lessdot p_2\lessdot p_3,
wielomian W(x) ma jeden pierwiastek jednokrotny i jeden pierwiastek
dwukrotny.
Podaj liczby p_1, p_2 i p_3.
Odpowiedzi:
p_1
=
(wpisz liczbę całkowitą)
p_2
=
(wpisz liczbę całkowitą)
p_3
=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Dla p\in(-\infty,a)\cup(b,c)\cup(d,+\infty)
wielomian W(x) ma trzy pierwiastki jednokrotne.
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=x^3-3(m-4)x^2+(3m^2-24m+47)x-9m^2+92m-220.
Wykres tego wielomianu, po przesunięciu o wektor
[-3,0], przechodzi przez początek układu
współrzędnych.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat