Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x+1 daje resztę 3.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 2x-4 przez wyrażenie -4x^2-8x-16 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja g(x)=2x^3+7x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,-\frac{7}{2}\right) B. x\in\left(-\infty,\frac{7}{2}\right)
C. x\in\left(0,\frac{7}{2}\right) D. x\in\left(-\infty,-\frac{7}{2}\right)\cup\left(-\frac{7}{2},0\right)
Zadanie 5.  4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^4+ax^3+bx^2-12x+13 , który przy dzieleniu przez każdy z dwumianów x+4, x+2 i x-2 daje tę samą resztę. Oblicz a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21009 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= 6x^3+10x^2+46x+28.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
Liczba \sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} jest całkowita.

Podaj jej wartość.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 251. Krawędź drugiego z tych sześcianów jest o 3 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20188 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Rozwiąż nierówność x^3+90\leqslant 2(x+5)^2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj ten z końców tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30148 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Stopień wielomianu W(x) jest większy od 2. Suma wszystkich współczynników tego wielomianu jest równa -14, a suma współczynników przy potęgach o parzystych wykładnikach jest równa sumie współczynników przy potęgach o nieparzystych wykładnikach. Wyznacz resztę R(x) z dzielenia tego wielomianu przez wielomian Q(x)=(x-1)(x+1).

Zapisz wielomian R(x) w postaci ogólnej R(x)=ax+b.
Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dla jakich wartości parametru p, równanie x^2-(p-3)x+p-1=0 ma dwa różne pierwiastki rzeczywiste?

Podaj największą możliwą wartość p, która nie spełnia. warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartości parametru p dwa różne pierwiastki rzeczywiste tego równania spełniają warunek x_1^4+x_2^4= 4p^3-54p^2+208p-178?

Podaj najmniejszą możliwą wartość p.

Odpowiedź:
p_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największą możliwą wartość p.
Odpowiedź:
p_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm