Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2-x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (2x+2)^3-(x-4)(x+4) zapisane w postaci sumy algebraicznej ma postać 8x^3+mx^2+nx+24, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wielomian W(x)=ax^3-8x^2+x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^3+ax^2+bx+1. Wiadomo, że P(-1)=-4 oraz, że reszta z dzielenia wielomianu P(x) przez dwumian x+2 jest równa -25.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)=x^3+3x^2+ax-15 ma trzy pierwiastki x_1, x_2 i x_3 takie, że x_2=x_1+b i x_3=x_1+2b, gdzie b\ > 0.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz te wartości parametrów m i n, dla których wielomian P(x)=x^9+\frac{m+1}{4}x+2n-2 jest podzielny przez wielomian Q(x)=1-x^2.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 3 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy -8.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż nierówność 6x^7-41x^5-7x^3\geqslant 0.

Podaj najmniejszą liczbę ujemną, która spełnia tę nierówność.

Odpowiedź:
min_{<0}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która spełnia tę nierówność.
Odpowiedź:
min_{>0}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że liczba -3 jest pierwiastkiem dwukrotnym tego wielomianu oraz że W(x) jest on podzielny przez dwumian x+1. Oblicz współczynniki b, c, d.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Rozwiąż nierówność W(x-2) \leqslant 0.

Podaj największą liczbę, która spełnia tę nierówność.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30158 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m-7)x^4-(m-7)x^2+4m-48=0 ma cztery różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm