Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(3m^2-24)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(4x-2)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja
g(x)=6x^3+6x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,1\right)
B. x\in\left(-\infty,-1\right)
C. x\in\left(-\infty,-1\right)\cup\left(-1,0\right)
D. x\in\left(0,1\right)
Zadanie 5. 2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=
-4x^4+6x^3-10x^2+2x+1
jest podzielny przez dwumian
P(x)=-2x+1 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
12x^3-8x^2-13x-3 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20191 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz resztę z dzielenia wielomianu
W(x)=x^3+(m)x^2+2(-2-m)(m+4)x przez dwumian
P(x)=x-(4+m) .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
2041 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20206 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wielomian
W(x)=2x^4-12x^3-16x^2+14x+11
przy dzieleniu przez wielomian
P(x)=x^2-1
daje resztę
ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30144 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Wielomian
W(x)=x^3+ax^2+bx+4 jest podzielny
przez trójmian kwadratowy
x^2+6x+8 . Wyznacz
współczynniki
a i
b
wielomianu
W(x) .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dany jest wielomian
W(x)=x^3-3(m+1)x^2+(3m^2+6m+2)x-9m^2+2m+15 .
Wykres tego wielomianu, po przesunięciu o wektor
[-3,0] , przechodzi przez początek układu
współrzędnych.
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Rozwiąż