Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-12)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-6x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(2x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba
4 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p+19\right)\left(x^2-9x+18\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-2x^2-\frac{1}{2}m^2x+2m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-6x^3-8x^2+10x+4
jest liczba
1 .
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
-x^3-9x^2+32x+288=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
65 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21012 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Liczba
5 jest pierwiastkiem trzykrotnym wielomianu
W(x)=x^4-18x^3+120x^2+mx+n .
Wyznacz wartości parametrów m i n .
Odpowiedzi:
Zadanie 10. 4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz te wartości parametru
m ,
dla których wielomian
W(x)=(m-6)x^3+(m-8)x^2-(2m-11)x
ma trzy pierwiastki rzeczywiste.
Podaj najmniejsze m , które nie spełnia warunków
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe
m , które nie spełnia warunków
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m-7)x^2+(m-5)^2=0
ma dwa rozwiązania
x_1 i
x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1 .
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż