Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-9)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę -20.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 8x^3+y^3 jest równe \left(2x+ay)\left(bx^2+cxy+y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{19}+x^{15}+x^{11}+x^{7}+x^{3}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x+1 B. 6x-1
C. 6x+1 D. 6x
Zadanie 5.  4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^4+ax^3+bx^2-22x+9 , który przy dzieleniu przez każdy z dwumianów x-1, x-2 i x-4 daje tę samą resztę. Oblicz a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)= -4x^3+10x^2+64x-160 jest podzielny przez dwumian P(x)=x-4. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-21003 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=(x^2-15x+55)^2-(x^2-10x+22)^2 jest podzielny przez wielomian P(x)=ax+b, a wynikiem tego dzielenia jest wielomian Q(x)=-5x^2+68x-231.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 1, jest równy 400.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wielomian W(x)=-2x^3+6x^2+8x+m przy dzieleniu przez dwumian x+1 daje resztę -24.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy z nich.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największy z nich.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że liczba -4 jest pierwiastkiem dwukrotnym tego wielomianu oraz że W(x) jest on podzielny przez dwumian x+3. Oblicz współczynniki b, c, d.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Rozwiąż nierówność W(x-1) \leqslant 0.

Podaj największą liczbę, która spełnia tę nierówność.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  5 pkt ⋅ Numer: pr-30155 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dane jest równanie (x^3+2x^2+2x+1)(x^2-(2m+3)x+m^2+3m-4)=0 . Dla jakich wartości parametru m równanie to ma trzy parami różne pierwiastki?

Podaj najmniejsze możliwe m, które nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m, które nie spełnia warunków zadania.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Dla jakich wartości parametru m trzy różne pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania jest dwa razy większa od pierwiastka trzeciego?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.5 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm