Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(12m^2-24)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę -18.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{7}-x)(x^2+7+\sqrt{7}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wielomian W(x)=36x^3+ax^2+36x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wielomian W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3 przy dzieleniu przez dwumian x+1 daje resztę -13.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę 36. Pierwiastkami tego wielomianu są liczby -4, 3 oraz 5.

Oblicz W(1).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20986 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=-6x^4+(a-b-8)x^3-21x^2+(2a-3b-23)x-15 jest podzielny przez wielomian P(x)=3x^2-2x+5, a wynikiem tego dzielenia jest wielomian Q(x)=-2x^2+x-3.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 15.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21012 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczba -6 jest pierwiastkiem trzykrotnym wielomianu W(x)=x^4+13x^3+18x^2+mx+n.

Wyznacz wartości parametrów m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Liczby -3 i 3 są pierwiastkami wielomianu W(x), dla którego zachodzi równość \text{st}.W(x)=4. Wielomian W(x) dzieli się bez reszty przez trójmian P(x)=x^2+\frac{3}{2}x-1, a do jego wykresu należy punkt o współrzędnych \left(-1,-48\right).

Wyznacz W(4).

Odpowiedź:
W(4)= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dany jest wielomian W(x)=(m+5)x^3+x^2+(m^2+10m+16)x+m+5. Jednym z pierwiastków tego wielomianu jest liczba 1.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Jednym z pierwiastków tego wielomianu jest liczba 1, a jeden z pozostałych pierwiastków należy do zbioru \mathbb{W}-\mathbb{C}.

Wyznacz ten pierwiastek.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm