Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 479/553 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 4x^6+5x^2+12x-3
C. 5x^2+12x-3 D. 4x^3+12x^2-3
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{2} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 2\sqrt{3} B. 2\sqrt{6}
C. 2\sqrt{2} D. 4\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 64x^3+8y^3 jest równe \left(4x+ay)\left(bx^2+cxy+4y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wielomian W(x)=ax^3+50x^2+25x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^4+ax^3+bx^2-2x+12 , który przy dzieleniu przez każdy z dwumianów x+4, x+1 i x-2 daje tę samą resztę. Oblicz a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę -30. Pierwiastkami tego wielomianu są liczby -3, -1 oraz 3.

Oblicz W(1).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20193 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian P(x)=x^5+ax^3+12x^2+bx-36 dzieli się przez wielomian Q(x)=12+x+x^3. Wyznacz liczby a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=0.3 litrów jest kwadrat, którego krawędź jest o 7 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21016 ⋅ Poprawnie: 0/2 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (x-8)\left[x^2+(-4m-8)x+ m^2+22m+16\right]=0 ma dokładnie dwa rozwiązania.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wielomian W(x)=x^5+(a-1)x^4-bx^3+bx^2+(c-3)x+6 dzieli się bez reszty przez wielomian P(x)=x^3-7x+6.

Podaj a+b.

Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dany jest wielomian W(x)=(m+5)x^3+x^2+(m^2+10m+16)x+m+5. Jednym z pierwiastków tego wielomianu jest liczba 1.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Jednym z pierwiastków tego wielomianu jest liczba 1, a jeden z pozostałych pierwiastków należy do zbioru \mathbb{W}-\mathbb{C}.

Wyznacz ten pierwiastek.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm