Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+7+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+7x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
64x^3+125y^3 jest równe
\left(4x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+3x^2-70 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
Wielomian
W(x)=10x^3-11x^2-12x-2
jest podzielny przez dwumian
P(x)=x+\frac{1}{2} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+12 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
\frac{x_2}{x_1}=-2 i
\frac{x_3}{x_1}=-6 .
Podaj wartości parametrów a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
wielomian
Q(x)=x^3+(2m+11)x^2+(8m+32)x ma dokładnie jeden
pierwiastek.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
4 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
126 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-21021 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-(2m+10)x^2-4x=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30142 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wyznacz wszystkie wartości parametrów
m,n ,
dla których wielomian
W(x)=4x^3+mx^2-166x+n jest podzielny przez dwumian
x+6 oraz zachodzi warunek
W(7)=0 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
Dla wyznaczonych wartości parametrów
m,n
rozwiąż nierówność
W(x) \lessdot 0 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj środek najmiejszego z tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
x^7-3(m+5)x^4+(2m^2+20m+54)x=0 ma trzy rozwiązania
rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma
trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej
16 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż