Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 491/595 [82%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-2 daje resztę
22 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{53}+x^{49}+x^{45}+x^{41}+x^{37}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x+1
B. 6x-1
C. 6x
D. 6x+1
Zadanie 5. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-3x^3+5x^2+2x-1
przez dwumian
P(x)=x-1 , otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
12x^3-32x^2+25x-6 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20189 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz te wartości parametru
m , dla których
wielomian
P(x)=2x^3-(m+3)x^2+(m^2-6m-4m+31)x+6 jest
podzielny przez dwumian
Q(x)=x-m+4 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
8 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
13 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
109
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20216 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Przy dzieleniu przez dwumiany
x-1 i
x+1 wielomian
W(x) daje reszty odpowienio
1 i
-1 oraz spełnia
warunek
W(-2)=13 . Jaką resztę daje wielomian
W(x) przy dzieleniu przez wielomian
Q(x)=\left(x^2-1\right)(x+2) .
Zapisz tę resztę w postaci
R(x)=ax^2+bx+c .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Pierwiastki
x_1 ,
x_2 i
x_3 wielomianu
W(x)=x^3+(m^2-34)x^2+18x spełniają warunki:
2x_2=x_3 i
x_1+x_2=3 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(11-m)x-2m+6 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(11-m)x-2m+6
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż