Wyznacz te wartości parametrów b i
c wielomianu
P(x)=x^3+bx^2+cx+1, dla których
P(-3)=-59 oraz reszta z dzielenia wielomianu
P(x) przez dwumian x+2
jest równa -23.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3, 5 i 2. Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o 210
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-21016 ⋅ Poprawnie: 0/2 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(x-9)\left[x^2+(-4m+6)x+ m^2+18m-63\right]=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0
«« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że
liczba -3 jest pierwiastkiem dwukrotnym tego
wielomianu oraz że W(x) jest on podzielny przez dwumian
x-2. Oblicz współczynniki b,
c, d.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiąż nierówność W(x-4) \leqslant 0.
Podaj największą liczbę, która spełnia tę nierówność.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30846 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3+(4m+7)x^2+(4m+15)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat