Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3
B. 5x^2+12x-3
C. 4x^3+12x^2-3
D. 4x^3+5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+1 daje resztę
-4 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{7}-x)(x^2+7+\sqrt{7}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+3)^2(x+1)(x-6)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wielomian
W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3
przy dzieleniu przez dwumian
x+1 daje resztę
-12 .
Podaj najmniejsze możliwe a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wyznacz wszystkie pierwiastki wielomianu
W(x)
wiedząc, że przy dzieleniu przez dwumian
x-1
wielomian ten daje iloraz równy
2(x^2-4x-8) oraz
resztę równą
24 .
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20986 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=-6x^4+(a-b+2)x^3-21x^2+(2a-3b+5)x-15 jest podzielny przez
wielomian
P(x)=3x^2-2x+5 , a wynikiem tego dzielenia jest wielomian
Q(x)=-2x^2+x-3 .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
4 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
360 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20235 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest wielomian
P(x) określony wzorem
P(x)=x^3-\frac{3}{2}x^2-22x+\frac{105}{2} .
Podaj najmniejszy z pierwiastków tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dany jest wielomian
W(x)=x^3+px^2+qx+3 , który dzieli
się przez dwumian
x-1 , a przy dzieleniu przez dwumian
x+1 daje resztę
0 .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiąż nierówność
W(x)\geqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
x^7-3(m+8)x^4+(2m^2+32m+132)x=0 ma trzy rozwiązania
rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma
trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej
16 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż