Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p-1)^3-p+1
C. 2(p+1)^3+p-1 D. 2(p-1)^3+p-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (3x+1)^3-(x-3)(x+3) zapisane w postaci sumy algebraicznej ma postać 27x^3+mx^2+nx+10, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-20x^2+100x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wielomian W(x)=x^3+ax^2+bx+1 dla argumentu 2 przyjmuje wartość 9 oraz przy dzieleniu przez dwumian x-3 daje resztę -14.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz sumę wszystkich pierwiastków wielomianu P(x)=(18x^3+25x^2+8x)(x^2-4).
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=-5x^4+5x^3+10x^2-25x-25 jest podzielny przez wielomian P(x)=ax+b, a wynikiem tego dzielenia jest wielomian Q(x)=x^3-2x^2+5.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 2041 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20221 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wielomian W(x) przy dzieleniu przez dwumian x-1 daje resztę 8, zaś przy dzieleniu przez x-2 resztę -7. Jaką resztę daje ten wielomian przy dzieleniu przez x^2-3x+2?

Zapisz tę resztę w postaci R(x)=ax+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj a.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Liczby -2 i -\frac{1}{2} są pierwiastkami wielomianu W(x)=2x^3+(a+b-3)x^2+(2a+5b-18)x-8.

Wyznacz parametry a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m+1)x^2+(3m^2+6m+2)x-9m^2+2m+15. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm