Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-4)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{5} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 5\sqrt{2} B. 15\sqrt{2}
C. 5\sqrt{6} D. 10\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (3x+4)^3-(x-3)(x+3) zapisane w postaci sumy algebraicznej ma postać 27x^3+mx^2+nx+73, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3-7x^2-5x-18.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (4,5) B. (-4,0)
C. (-9,-5) D. (5,9)
Zadanie 5.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x-5.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= -x^3-2x^2+4x+8.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz te wartości parametru m, dla których wielomian Q(x)=x^3+(2m-1)x^2+(8m-16)x ma dokładnie jeden pierwiastek.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 621 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20213 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Przy dzieleniu przez trójmian x^2-4x-12 wielomian W(x) daje resztę R(x)=ax+b. Wartość wielomianu W(x) w punkcie 6 jest równa -32, a dwumian x+2 jest dzielnikiem wielomianu W(x)

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30149 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przy dzieleniu przez dwumiany x+2, x-1 i x-3 wielomian W(x) daje reszty równe odpowiednio -28\text{, }-1\text{, }-3. Wyznacz resztę R(x) z dzielenia wielomianu W(x) przez wielomian P(x)=x^3-2x^2-5x+6.

Podaj R(3).

Odpowiedź:
R(3)= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj R(-3).
Odpowiedź:
R(-3)= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30845 ⋅ Poprawnie: 45/33 [136%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie x^3-(2m+16)x^2+(2m^2+31m+120)x=0 ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm