Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(8m^2-24)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{5} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 5\sqrt{6} B. 10\sqrt{2}
C. 5\sqrt{2} D. 5\sqrt{3}
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 3x-1 przez wyrażenie -9x^2-3x-1 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba -4 jest pierwiastkiem wielomianu określonego wzorem W(x)=\left(x^2+px+p+20\right)\left(x^2+9x+8\right).

Wyznacz pierwiastek dwukrotny tego wielomianu.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wielomian W(x)= 2x^4+3x^3+8x^2-7x+1 jest podzielny przez dwumian P(x)=-2x+1, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a i b

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Wyznacz współczynniki c i d
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Liczby -3, -2 i 4 są pierwiastkami wielomianu W(x)=ax^3+bx^2+cx+d, a reszta z dzielenia tego wielominau przez dwumian P(x)=x+1 jest równa 10.

Wyznacz wartości współczynników b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyrażenie \frac{8\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 3, jest równy 1600.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20236 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wielomian W(x)=3x^3+mx^2-48x-240 przy dzieleniu przez dwumian x+1 daje resztę -180.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest wielomian W(x)=x^3+px^2+qx+12, który dzieli się przez dwumian x-1, a przy dzieleniu przez dwumian x+1 daje resztę 20.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Rozwiąż nierówność W(x)\geqslant 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+2(m+1)x^2+4m^2+48m+144=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm