Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(7m^2-21)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3+p-1
B. 2(p+1)^3+p-1
C. 2(p-1)^3-p+1
D. 2(p+1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(6x-7)^2x+(7-6x)x^2-(6x-7) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja
g(x)=9x^3-11x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,\frac{11}{9}\right)
B. x\in\left(0,\frac{11}{9}\right)
C. x\in(-\infty,0)\cup\left(0,\frac{11}{9}\right)
D. x\in\left(\frac{11}{9},+\infty\right)
Zadanie 5. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(-4)=-139 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+2 jest
równa
-29 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3-3x^2+ax+3 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2=x_1+b i
x_3=x_1+2b , gdzie
b\ > 0 .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz te wartości parametrów
m i
n , dla których wielomian
P(x)=x^9+\frac{m+7}{4}x+2n-4 jest podzielny przez
wielomian
Q(x)=1-x^2 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3 ,
5 i
2 . Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o
530
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20184 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz te wartości
m\in\mathbb{R} , dla których
równanie
|1x+2|=
12m^3-23m^2-36m-9 ma rozwiązanie.
Podaj największą liczbę z przedziału (-\infty,1) , która
spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą liczbę
m , która spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m , dla
których równanie
x^2-4(m)x-m^3+6m^2+1m-2=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m , dla
których to równanie dwa różne pierwiastki rzeczywiste takie, że
\left(x_1-x_2\right)^2 \lessdot 8m+8 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
x^7-3(m-2)x^4+(2m^2-8m+12)x=0 ma trzy rozwiązania
rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma
trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej
16 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż