Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(2m^2-12)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{4} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 4\sqrt{3} B. 4\sqrt{6}
C. 4\sqrt{2} D. 12\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{2}-x)(x^2+2+\sqrt{2}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{49}+x^{45}+x^{41}+x^{37}+x^{33}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x B. 3x-1
C. 6x-1 D. 6x+1
Zadanie 5.  4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^3+ax^2+bx+1. Wiadomo, że P(-4)=29 oraz, że reszta z dzielenia wielomianu P(x) przez dwumian x+1 jest równa 5.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=-2x^4+bx^3+cx^2+dx+e jest podzielny przez wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu W(x) jest równa -32, a reszta z dzielenia wielomianu W(x) przez dwumian Q(x)=x+2 jest równa 40.

Wyznacz wartości współczynników b, c i d.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
Liczba \sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} jest całkowita.

Podaj jej wartość.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 4 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy 126.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21029 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Liczby -1 i 2 są pierwiastkami wielomianu W(x) stopnia trzeciego o krotnościach odpowiednio 2 i 1. Do wykresu funkcji wielomianowej określonej wzorem y=W(x) należy punkt A=\left(4,\frac{50}{3}\right).

Zapisz wzór wielomianu W(x) w postaci ogólnej W(x)=ax^3+bx^2+cx+d. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Prosta o równaniu y=-\frac{2}{3}x-\frac{2}{3} przecina wykres tej funkcji wielomianowej w trzech punktach o rzędnych x_1\lessdot x_2\lessdot x_3.

Podaj liczby x_1, x_2 i x_3.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
x_3= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Pierwiastkami wielomianu W(x)=4x^3+px^2+qx-3 są liczby -1 i 1.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m+1)x^2+(3m^2+6m+2)x-9m^2+2m+15. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm