«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{2}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.2\sqrt{2}
B.4\sqrt{2}
C.2\sqrt{6}
D.6\sqrt{2}
Zadanie 3.1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o 1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
4.
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-21027 ⋅ Poprawnie: 0/0
Wykres funkcji określonej wzorem y=\frac{1}{5}x^4 przesunięto o wektor
o współrzędnych [-6,-5] i otrzymano wykres funkcji wielomianowej określonej
wzorem y=W(x).
W postaci iloczynowej wielomianu W(x) występuje nierozkładalny czynnik
postaci x^2+bx+c. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
Podaj najmniejszy pierwiastek wielomianu W(x).
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 9.3 (0.5 pkt)
Podaj największy pierwiastek wielomianu W(x).
Odpowiedź:
x_{max}=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30162 ⋅ Poprawnie: 0/0