Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m+12)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x+1 daje resztę 5.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{7}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x-3)^2(x-5)(x-7)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Wielomian W(x)=x^3+9x^2+mx-2 przy dzieleniu przez dwumian x-2 daje resztę 41.

Oblicz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= 12x^3+16x^2-7x-6.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=(8x^3-27)(9x-3) jest podzielny przez wielomian P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 3 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy 432.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Przy dzieleniu przez dwumiany x-1 i x+1 wielomian W(x) daje reszty odpowienio 1 i -1 oraz spełnia warunek W(-2)=-5. Jaką resztę daje wielomian W(x) przy dzieleniu przez wielomian Q(x)=\left(x^2-1\right)(x+2). Zapisz tę resztę w postaci R(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+1)x+m^2+6m+5=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których suma różnych pierwiastków tego równania jest mniejsza od 2m^3+30m^2+150m+247.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Liczby x_1, x_2 i x_3 są trzema różnymi pierwiastkami wielomianu W(x)=x^3+6x^2+(2-m)x-2m-12. Wiedząc, że x_1^2+x_2^2+x_3^2=30, wyznacz m.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Dla jakich wartości parametru m suma dwóch pierwiastków wielomianu W(x)=x^3+6x^2+(2-m)x-2m-12 jest równa pierwiastkowi trzeciemu.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm