Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(3m^2-9)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3-p+1
B. 2(p+1)^3-p+1
C. 2(p+1)^3+p-1
D. 2(p-1)^3+p-1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
64x^3+y^3 jest równe
\left(4x+ay)\left(bx^2+cxy+y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{27}+x^{23}+x^{19}+x^{15}+x^{11}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x+1
B. 6x
C. 3x-1
D. 6x+1
Zadanie 5. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+8x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=
x^3-\frac{1}{2}x^2-\frac{13}{2}x-3
jest podzielny przez dwumian
P(x)=x-3 .
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20193 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
P(x)=x^5+ax^3+12x^2+bx-36 dzieli
się przez wielomian
Q(x)=12+x+x^3 .
Wyznacz liczby
a i
b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.2 litrów jest kwadrat, którego krawędź jest
o
8 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20235 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest wielomian
P(x) określony wzorem
P(x)=x^3+\frac{7}{2}x^2-7x+\frac{5}{2} .
Podaj najmniejszy z pierwiastków tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest wielomian
W(x)=(m-1)x^3-(m+9)x^2-(m+2)x+m+6 , który dzieli się
bez reszty przez
x+1 . Wyznacz te wartości
parametru
m , dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dla jakich wartości parametru
m suma wszystkich
pierwiastków wielomianu
x^3+(m^2+14m+47)x^2-(2m^2+28m+102)x+8=0
ma wartość równą
-2 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż