Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q-12+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1 B. 2(p+1)^3-p+1
C. 2(p-1)^3+p-1 D. 2(p-1)^3-p+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (2x-3)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{19}+x^{15}+x^{11}+x^{7}+x^{3}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x-1 B. 6x
C. 6x+1 D. 3x-1
Zadanie 5.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m-6)^3x^8+(m^2-12m+35)x^5+2(m-5)x^2+(m-6)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= -3x^3+6x^2+21x+12.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 147/310 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie x^3+6x^2+2x+12=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=3.2 litrów jest kwadrat, którego krawędź jest o 12 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wielomian P(x)=x^4-2x^3+5x^2-4x+3 przedstaw w postaci \left(x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right), gdzie b_1,c_1,b_2,c_2\in\mathbb{C}.

Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
min(b_1, b_2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj większą z liczb b_1 i. b_2.
Odpowiedź:
max(b_1, b_2)= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30149 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przy dzieleniu przez dwumiany x+3, x+2 i x-1 wielomian W(x) daje reszty równe odpowiednio -42\text{, }-25\text{, }2. Wyznacz resztę R(x) z dzielenia wielomianu W(x) przez wielomian P(x)=x^3+4x^2+x-6.

Podaj R(3).

Odpowiedź:
R(3)= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj R(-3).
Odpowiedź:
R(-3)= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie x^7-3(m-10)x^4+(2m^2-40m+204)x=0 ma trzy rozwiązania rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie to ma trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej 16.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm