Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 5x^2+12x-3
C. 4x^6+5x^2+12x-3 D. 4x^3+12x^2-3
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę -66.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{3}-x)(x^2+3+\sqrt{3}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3+5x^2+7x+6.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (0,2) B. (1,3)
C. (-2,-1) D. (-3,-2)
Zadanie 5.  2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3+5x^2-\frac{1}{2}m^2x-10m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Liczby -7, -2 i 6 są pierwiastkami wielomianu W(x)=ax^3+bx^2+cx+d, a reszta z dzielenia tego wielominau przez dwumian P(x)=x+1 jest równa -42.

Wyznacz wartości współczynników b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie x^3-4x^2-8x+32=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{Z}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=1.6 litrów jest kwadrat, którego krawędź jest o 16 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20182 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dziedziną funkcji h(x)=\sqrt{\left(x^2+2bx-ax-2ab\right)\left(x^2+4x-21\right)} jest zbiór \mathbb{R}.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Liczby -2 i -\frac{1}{2} są pierwiastkami wielomianu W(x)=2x^3+(a+b-3)x^2+(2a+5b-21)x-8.

Wyznacz parametry a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m suma wszystkich pierwiastków wielomianu x^3+(m^2+6m+7)x^2-(2m^2+12m+22)x+8=0 ma wartość równą -2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm