Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11556  
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^6+5x^2+12x-3
C. 4x^3+12x^2-3 D. 4x^3+5x^2+12x-3
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11679  
Podpunkt 2.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11673  
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 2x-5 przez wyrażenie -4x^2-10x-25 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-11604  
Podpunkt 4.1 (1 pkt)
 « Wielomian W(x)=ax^3+50x^2+25x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20991  
Podpunkt 5.1 (2 pkt)
 Wielomian W(x)= 12x^4+17x^3+7x^2+9x-3 jest podzielny przez dwumian P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20211  
Podpunkt 6.1 (1 pkt)
 » Wyznacz wszystkie pierwiastki wielomianu W(x) wiedząc, że przy dzieleniu przez dwumian x-1 wielomian ten daje iloraz równy 2(x^2-x-26) oraz resztę równą 48.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20985  
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b+23)x^2-(4a+9b+92)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21006  
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=10.0 litrów jest kwadrat, którego krawędź jest o 9 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20236  
Podpunkt 9.1 (1 pkt)
 Wielomian W(x)=-2x^3+mx^2+32x+160 przy dzieleniu przez dwumian x+1 daje resztę 120.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30161  
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=(m-5)x^3+(m-7)x^2-(2m-9)x ma trzy pierwiastki rzeczywiste.

Podaj najmniejsze m, które nie spełnia warunków zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe m, które nie spełnia warunków zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30154  
Podpunkt 11.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m-3)x^2+(3m^2-18m+26)x-9m^2+74m-137. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm