Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m+6)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p+1)^3+p-1
C. 2(p-1)^3+p-1 D. 2(p-1)^3-p+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{3}-x)(x^2+3+\sqrt{3}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest wielomian Q(x)=-35x^3-px^2-qx+10, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. -1 B. \frac{5}{7}
C. \frac{5}{4} D. -\frac{2}{5}
Zadanie 5.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m+3)^3x^8+(m^2+6m+8)x^5+2(m+4)x^2+(m+3)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz sumę wszystkich pierwiastków wielomianu P(x)=(18x^3+11x^2-3x)(x^2-13).
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomiany W(x)-F(x), gdzie W(x)=x^3+(a+3)x^2+3x+1 i F(x)=2x^2+(b-4)x-4, oraz H(x)=x^3-7x^2+8x+5 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=0.4 litrów jest kwadrat, którego krawędź jest o 6 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20185 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Nierówność (x^2+(-6p-7q)x+5p+6q)(x-7)(x-1)\geqslant 0 jest tożsamościowa w zbiorze \mathbb{R}.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=(m+3)x^3+(m+1)x^2-(2m+7)x ma trzy pierwiastki rzeczywiste.

Podaj najmniejsze m, które nie spełnia warunków zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe m, które nie spełnia warunków zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30847 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+(m-10)x^2+m^2-15m+50=0 ma dokładnie dwa rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszy z końców tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm