«« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że
liczba -4 jest pierwiastkiem dwukrotnym tego
wielomianu oraz że W(x) jest on podzielny przez dwumian
x+3. Oblicz współczynniki b,
c, d.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiąż nierówność W(x-1) \leqslant 0.
Podaj największą liczbę, która spełnia tę nierówność.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 11.5 pkt ⋅ Numer: pr-30155 ⋅ Poprawnie: 0/0
«« Dane jest równanie
(x^3+2x^2+2x+1)(x^2-(2m+3)x+m^2+3m-4)=0
.
Dla jakich wartości parametru m równanie to ma trzy
parami różne pierwiastki?
Podaj najmniejsze możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Dla jakich wartości parametru m trzy różne
pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania
jest dwa razy większa od pierwiastka trzeciego?
Podaj najmniejsze możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj największe możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 11.5 (1 pkt)
Podaj m spełniające warunki zadania, które nie jest liczbą
całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat