Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3 D. 5x^2+12x-3
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1 B. 2(p-1)^3+p-1
C. 2(p+1)^3-p+1 D. 2(p-1)^3-p+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 2x-1 przez wyrażenie -4x^2-2x-1 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja g(x)=2x^3-10x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in(-\infty,0)\cup\left(0,5\right) B. x\in\left(5,+\infty\right)
C. x\in\left(0,5\right) D. x\in\left(-\infty,5\right)
Zadanie 5.  2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Wielomian W(x)= 20x^4-x^3+3x^2+7x-2 jest podzielny przez dwumian P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)= x^3+\frac{1}{2}x^2-20x-\frac{75}{2} jest podzielny przez dwumian P(x)=x-5. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie -x^3-8x^2+8x+64=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 4.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20187 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości x\in\mathbb{R}, które spełniają nierówność 24x+23x^2+16x^4\geqslant 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m-9)x+m^2-14m+45=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których suma różnych pierwiastków tego równania jest mniejsza od 2m^3-30m^2+150m-253.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30849 ⋅ Poprawnie: 38/33 [115%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+(9-m)x^2-2m+13=0 nie ma rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm