W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o 2 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
21.
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20179 ⋅ Poprawnie: 0/0
« Wielomian W(x) ma pierwiastek trzykrotny
równy 1 oraz daje resztę
3
przy dzieleniu przez dwumian x+1. Wiedząc, że
\text{st.}W(x)=3 wyznacz jego wzór.
Podaj najwyższy współczynnik wielomianu W(x)
(stojący przy niewiadomej w najwyższej potędze).
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj wyraz wolny tego wielomianu.
Odpowiedź:
a_0=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0
Liczby -4 i 4 są
pierwiastkami wielomianu W(x), dla którego zachodzi
równość \text{st}.W(x)=4. Wielomian
W(x) dzieli się bez reszty przez trójmian
P(x)=x^2-\frac{7}{2}x+\frac{3}{2}, a do jego wykresu należy punkt
o współrzędnych \left(-1,360\right).
Wyznacz W(4).
Odpowiedź:
W(4)=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz pozostałe pierwiastki tego wielomianu. Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]