Suma objętości trzech sześcianów jest równa 160.
Krawędź drugiego z tych sześcianów jest o 2 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20178 ⋅ Poprawnie: 0/0
» Wielomian Q(x)=ax^3+bx^2+cx+d dla argumentu
0 przyjmuje wartość -75.
Liczba x_1=-1 jest jego pierwiastkiem, zaś liczba
x_2=-5 jest pierwiastkiem dwukrotnym wielomianu
Q(x).
Wyznacz b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0
« Dana jest funkcja
f(x)=|x^3-2\sqrt{3}x^2-x+2\sqrt{3}|, której wykres
przesunięto o wektor
\vec{u}=[-2\sqrt{3}, -\sqrt{2}],
w wyniku czego otrzymano wykres funkcji g. Dla jakich
argumentów funkcja g osiąga wartość najmniejszą i
ile ona jest równa?
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
g_{min}(x)=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat