Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 313/576 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+8+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2+5x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(4x+4)^3-(x-5)(x+5)
zapisane w postaci sumy algebraicznej ma postać
64x^3+mx^2+nx+89 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{61}+x^{57}+x^{53}+x^{49}+x^{45}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x
B. 3x+1
C. 3x-1
D. 6x+1
Zadanie 5. 2 pkt ⋅ Numer: pr-20196 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz te wartości parametrów
b i
c wielomianu
P(x)=x^3+bx^2+cx+1 , dla których
P(1)=-2 oraz reszta z dzielenia wielomianu
P(x) przez dwumian
x+1
jest równa
2 .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx-48 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
\frac{x_2}{x_1}=4 i
\frac{x_3}{x_1}=12 .
Podaj wartości parametrów a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-21002 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wielomiany
W(x)=(ax-2)(x+2)^2 ,
P(x)=(2x+b)(x^2+3) oraz
H(x)=9x^3+28x^2+26x-2 ,
spełniają warunek
W(x)+P(x)-H(x)\equiv 0 .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
9 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wielomian
P(x)=x^4-4x^3+39x^2-38x+35 przedstaw w postaci
\left(x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right) , gdzie
b_1,c_1,b_2,c_2\in\mathbb{C} .
Podaj mniejszą z liczb b_1 i b_2 .
Odpowiedź:
min(b_1, b_2)=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj większą z liczb
b_1 i
b_2 .
Odpowiedź:
max(b_1, b_2)=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Wielomian
W(x)=9x^3+bx^2+cx+144 jest podzielny przez
trójmian
P(x)=9x^2-60x+36 .
Podaj wartość parametru b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj wartość parametru
c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30158 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
(m+7)x^4-(m+7)x^2+4m+8=0 ma cztery
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż