Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2+4x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (8x-4)^2x+(4-8x)x^2-(8x-4) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest wielomian Q(x)=65x^3-px^2-qx-14, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. -\frac{2}{5} B. -\frac{2}{13}
C. \frac{7}{13} D. \frac{7}{6}
Zadanie 5.  2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wielomian W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3 przy dzieleniu przez dwumian x+1 daje resztę -7.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=x^4+bx^3+cx^2+dx+e jest podzielny przez wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu W(x) jest równa -16, a reszta z dzielenia wielomianu W(x) przez dwumian Q(x)=x+2 jest równa 140.

Wyznacz wartości współczynników b, c i d.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomiany W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz P(x)=4x^3+12x^2 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 3195 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20190 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba 2 jest pierwiastkiem trzykrotnym wielomianu W(x)=x^4+ax^3+2mx^2+bx+n-1.

Podaj m.

Dane
a=-9
b=-44
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj n.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że liczba 2 jest pierwiastkiem dwukrotnym tego wielomianu oraz że W(x) jest on podzielny przez dwumian x-3. Oblicz współczynniki b, c, d.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Rozwiąż nierówność W(x-3) \leqslant 0.

Podaj największą liczbę, która spełnia tę nierówność.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30845 ⋅ Poprawnie: 45/33 [136%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie x^3-(2m+10)x^2+(2m^2+19m+45)x=0 ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm