Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3 B. 5x^2+12x-3
C. 4x^3+5x^2+12x-3 D. 4x^6+5x^2+12x-3
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x+1 daje resztę 0.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (3x-2)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\frac{1}{\sqrt{x^3+22x^2+121x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m+6)^3x^8+(m^2+12m+35)x^5+2(m+7)x^2+(m+6)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m+8)x^2+(4m+34)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20189 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz te wartości parametru m, dla których wielomian P(x)=2x^3-(m+4)x^2+(m^2-6m-2m+22)x+6 jest podzielny przez dwumian Q(x)=x-m+3?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa od cyfry setek, zaś cyfra jedności jest o 2 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 18.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21024 ⋅ Poprawnie: 41/33 [124%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (x^2-9x+18)\left[x^2+(m-12)x-4m+33\right]=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych niecałkowitych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest wielomian W(x)=(m)x^3-(m+10)x^2-(m+3)x+m+7, który dzieli się bez reszty przez x+1. Wyznacz te wartości parametru m, dla których wielomian ten ma dokładnie dwa pierwiastki.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  5 pkt ⋅ Numer: pr-30155 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dane jest równanie (x^3+2x^2+2x+1)(x^2-(2m-19)x+m^2-19m+84)=0 . Dla jakich wartości parametru m równanie to ma trzy parami różne pierwiastki?

Podaj najmniejsze możliwe m, które nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m, które nie spełnia warunków zadania.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Dla jakich wartości parametru m trzy różne pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania jest dwa razy większa od pierwiastka trzeciego?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.5 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm