Suma objętości trzech sześcianów jest równa 216.
Krawędź drugiego z tych sześcianów jest o 1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20199 ⋅ Poprawnie: 0/0
«« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że
liczba -4 jest pierwiastkiem dwukrotnym tego
wielomianu oraz że W(x) jest on podzielny przez dwumian
x+1. Oblicz współczynniki b,
c, d.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiąż nierówność W(x-3) \leqslant 0.
Podaj największą liczbę, która spełnia tę nierówność.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(m-6)x^2+(m-4)^2=0
ma dwa rozwiązania x_1 i x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.
Podaj najmniejsze możliwe m.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat