Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2+4x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (4x-5)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x-1)^2(x-2)(x-8)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^4+ax^3+bx^2-2x-23 , który przy dzieleniu przez każdy z dwumianów x+2, x+4 i x+3 daje tę samą resztę. Oblicz a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz sumę wszystkich pierwiastków wielomianu P(x)=(18x^3-31x^2+11x)(x^2-12).
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  3 pkt ⋅ Numer: pr-20228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których część wspólna przedziałów (-\infty, m^3+9m^2+27m+24 \rangle oraz \left\langle -5m^2-27m-36 ,+\infty\right) jest zbiorem jednoelementowym.

Podaj najmniejsze możliwe m, które jest liczbą całkowitą.

Odpowiedź:
min_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
 Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 9.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21016 ⋅ Poprawnie: 0/2 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (x+3)\left[x^2+(-4m-10)x+ m^2-10m-47\right]=0 ma dokładnie dwa rozwiązania.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest wielomian W(x)=(m-2)x^3-(m+8)x^2-(m+1)x+m+5, który dzieli się bez reszty przez x+1. Wyznacz te wartości parametru m, dla których wielomian ten ma dokładnie dwa pierwiastki.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m suma wszystkich pierwiastków wielomianu x^3+(m^2+12m+34)x^2-(2m^2+24m+76)x+8=0 ma wartość równą -2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm