Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3
B. 5x^2+12x-3
C. 4x^3+12x^2-3
D. 4x^6+5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-3x-0,25 przez
dwumian
x+0,75 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(2x+1)^3-(x-6)(x+6)
zapisane w postaci sumy algebraicznej ma postać
8x^3+mx^2+nx+37 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-5x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (-\infty,p\rangle\cup\{q\}
C. (p,q)
D. \langle p,q\rangle
E. \langle p,+\infty)
F. \{p\}\cup\langle q,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pp-20992 ⋅ Poprawnie: 21/36 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=
-6x^4+11x^3-9x^2+3x+9
jest podzielny przez dwumian
P(x)=2x-3 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Oblicz sumę wszystkich pierwiastków wielomianu
P(x)=(18x^3+2x^2-2x)(x^2-4) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 146/309 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
x^3+5x^2+3x+15=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
5 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
9 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
53
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20216 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Przy dzieleniu przez dwumiany
x-1 i
x+1 wielomian
W(x) daje reszty odpowienio
1 i
-1 oraz spełnia
warunek
W(-2)=4 . Jaką resztę daje wielomian
W(x) przy dzieleniu przez wielomian
Q(x)=\left(x^2-1\right)(x+2) .
Zapisz tę resztę w postaci
R(x)=ax^2+bx+c .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Pierwiastki
x_1 ,
x_2 i
x_3 wielomianu
W(x)=x^3+(m^2-7)x^2+18x spełniają warunki:
2x_2=x_3 i
x_1+x_2=-3 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dla jakich wartości parametru
m suma wszystkich
pierwiastków wielomianu
x^3+(m^2-12m+34)x^2-(2m^2-24m+76)x+8=0
ma wartość równą
-2 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż