Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+11+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+5x-0,25 przez
dwumian
x+0,75 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{13}-x)(x^2+13+\sqrt{13}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+3x^2+5x+2 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (0,1)
B. (0,1)
C. (-1,-1)
D. (-1,0)
Zadanie 5. 2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
« Liczba
p jest resztą z dzielenia wielomianu
W(x)=6x^3-4x^2 przez
x+3 ,
a liczba
q resztą z dzielnia tego wielomianu przez
x-5 .
Oblicz |2p-q| .
Odpowiedź:
|2p-q|=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3-6x^2+ax+64 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2=x_1+b i
x_3=x_1+2b , gdzie
b\ > 0 .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wielomian
W(x)=-10x^3-9x^2+ax+b jest podzielny przez
wielomian
P(x)=1-2x , a wynikiem tego dzielenia jest wielomian
Q(x)=5x^2+7x-8 .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
3 , jest równy
324 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20220 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wielomian
W(x) przy dzieleniu przez dwumian
x-1 daje resztę
5 . Ponadto
W(2)=9 . Jaką resztę daje ten wielomian przy dzieleniu
przez
Q(x)=(x-1)(x-2) ?
Zapisz tę resztę w postaci R(x)=ax+b . Podaj
a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-5)x+m^2-6m+5=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3-6m^2+6m-5 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+2(m+2)x^2+4m^2+56m+196=0
ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Podaj największy z końców tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż