Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m+8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2+4x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{3}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wielomian W(x)=25x^3+ax^2+36x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dany jest wielomian P(x)=x^3+ax^2+bx+1. Wiadomo, że P(-4)=-191 oraz, że reszta z dzielenia wielomianu P(x) przez dwumian x-2 jest równa 1.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-21009 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= 6x^3+2x^2+26x-20.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 147/310 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie x^3+5x^2+6x+30=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 2310 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21029 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Liczby 3 i 6 są pierwiastkami wielomianu W(x) stopnia trzeciego o krotnościach odpowiednio 2 i 1. Do wykresu funkcji wielomianowej określonej wzorem y=W(x) należy punkt A=\left(8,\frac{50}{3}\right).

Zapisz wzór wielomianu W(x) w postaci ogólnej W(x)=ax^3+bx^2+cx+d. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Prosta o równaniu y=-\frac{2}{3}x+2 przecina wykres tej funkcji wielomianowej w trzech punktach o rzędnych x_1\lessdot x_2\lessdot x_3.

Podaj liczby x_1, x_2 i x_3.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
x_3= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Pierwiastki x_1, x_2 i x_3 wielomianu W(x)=x^3+(m^2-25)x^2+18x spełniają warunki: 2x_2=x_3 i x_1+x_2=3.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja f(x)=|x^3-8\sqrt{3}x^2-x+8\sqrt{3}|, której wykres przesunięto o wektor \vec{u}=[-8\sqrt{3}, -\sqrt{5}], w wyniku czego otrzymano wykres funkcji g. Dla jakich argumentów funkcja g osiąga wartość najmniejszą i ile ona jest równa?

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
g_{min}(x)= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejszy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm