Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-6x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
2x-1 przez wyrażenie
-4x^2-2x-1
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-16x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p, q)\cup(r,+\infty)
B. \langle p,q\rangle
C. \langle p, q\rangle\cup\langle r,+\infty)
D. (p,q)
E. (-\infty,p)\cup(q,r)
F. (-\infty,p\rangle\cup\langle q,r\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+10x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
-x^3+12x^2-45x+54 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wielomian
W(x)=-4x^4+7x^3+2x^2-20x-5 jest podzielny przez
wielomian
P(x)=ax+b , a wynikiem tego dzielenia jest wielomian
Q(x)=x^3-2x^2+5 .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
4 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wielomian
P(x)=x^4+3x^3+18x^2-17x+21 przedstaw w postaci
\left(x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right) , gdzie
b_1,c_1,b_2,c_2\in\mathbb{C} .
Podaj mniejszą z liczb b_1 i b_2 .
Odpowiedź:
min(b_1, b_2)=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj większą z liczb
b_1 i
b_2 .
Odpowiedź:
max(b_1, b_2)=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-9)x+m^2-14m+45=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3-30m^2+150m-253 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30157 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dla jakich wartości parametru
p , równanie
x^2-(p-4)x+p-2=0 ma dwa różne pierwiastki
rzeczywiste?
Podaj największą możliwą wartość p , która nie spełnia.
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
Dla jakich wartości parametru
p dwa różne pierwiastki
rzeczywiste tego równania spełniają warunek
x_1^4+x_2^4=
4p^3-66p^2+328p-444 ?
Podaj najmniejszą możliwą wartość p .
Odpowiedź:
p_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największą możliwą wartość
p .
Odpowiedź:
p_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż