» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2+6x-3) oraz
resztę równą -96.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0
Wielomian P(x)=x(-3x^2-4x+5)+p przy dzieleniu przez
dwumian Q(x)=x+1 daje resztę
-4. Oblicz wartość współczynnika
p i wyznacz wszystkie pierwiastki wielomianu
P(x).
Podaj p.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
« Dana jest funkcja
f(x)=|x^3-5\sqrt{5}x^2-x+5\sqrt{5}|, której wykres
przesunięto o wektor
\vec{u}=[-5\sqrt{5}, -\sqrt{5}],
w wyniku czego otrzymano wykres funkcji g. Dla jakich
argumentów funkcja g osiąga wartość najmniejszą i
ile ona jest równa?
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
g_{min}(x)=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat