Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3
B. 5x^2+12x-3
C. 4x^3+5x^2+12x-3
D. 4x^3+12x^2-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+4x-0,25 przez
dwumian
x+0,75 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
8x^3+125y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba
-3 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p+9\right)\left(x^2+2x-24\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
Wielomian
W(x)=
16x^4+4x^3-14x^2+11x-2
jest podzielny przez dwumian
P(x)=x-\frac{1}{4} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-21011 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
x^3+\frac{7}{6}x^2-5x+\frac{3}{2} .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wielomian
W(x)=-10x^3-7x^2+ax+b jest podzielny przez
wielomian
P(x)=1-2x , a wynikiem tego dzielenia jest wielomian
Q(x)=5x^2+6x+4 .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.8 litrów jest kwadrat, którego krawędź jest
o
13 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-21012 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Liczba
5 jest pierwiastkiem trzykrotnym wielomianu
W(x)=x^4-12x^3+30x^2+mx+n .
Wyznacz wartości parametrów m i n .
Odpowiedzi:
Zadanie 10. 4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Wielomian
W(x)=x^5+(a+3)x^4-bx^3+bx^2+(c+1)x+6
dzieli się bez reszty przez wielomian
P(x)=x^3-7x+6 .
Podaj a+b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+6mx^2+36mx+216=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż