« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(m+5)x^3=x(2x-m-6)
ma trzy rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Największy z końców tych przedziałów jest liczbą postaci
\frac{a+\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z} i
b jest liczbą pierwszą.
Podaj liczby a, b i c.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=(m)x^3-(m+10)x^2-(m+3)x+m+7, który dzieli się
bez reszty przez x+1. Wyznacz te wartości
parametru m, dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0