Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o 6 osób więcej niż w pierwzej, zaś w trzeciej
grupie o 11 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o 86
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-21022 ⋅ Poprawnie: 50/33 [151%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-6x^2+(8m+27)x+10m+40=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(-2-m)x^2-2m-9=0
nie ma rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat