Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(5m^2-25)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-7x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(2x+1)^3-(x-7)(x+7)
zapisane w postaci sumy algebraicznej ma postać
8x^3+mx^2+nx+50 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+6x^2+9x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
Wielomian
W(x)=-10x^3+3x^2-12x-8
jest podzielny przez dwumian
P(x)=x+\frac{1}{2} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m-5)x^2+(4m-18)x-12
jest podzielny przez dwumian
P(x)=x+2 .
Wyznacz parametr m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20195 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
P(x)=2x^3+ax^2+bx-12 dzieli się przez
wielomian
Q(x)=x^2-4x+4 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
2 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20185 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Nierówność
(x^2+(-6p-5q)x+7p+6q)(x-4)(x+8)\geqslant 0
jest tożsamościowa w zbiorze
\mathbb{R} .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30144 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Wielomian
W(x)=x^3+ax^2+bx-8 jest podzielny
przez trójmian kwadratowy
x^2-12x+32 . Wyznacz
współczynniki
a i
b
wielomianu
W(x) .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(12-m)x-2m+8 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(12-m)x-2m+8
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż