Podgląd testu : lo2@sp-17-wielomiany-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-12+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-4x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(2x-3)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+6)^2(x+1)(x-6)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
r=15
» Wielomian
W(x)=x^4+a^2x^3+ax^2-x+3 przy
dzieleniu przez dwumian
x-1 daje resztę
15 .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wyznacz wszystkie pierwiastki wielomianu
W(x)
wiedząc, że przy dzieleniu przez dwumian
x-1
wielomian ten daje iloraz równy
2(x^2+2x-14) oraz
resztę równą
-60 .
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
x^3+9x^2-12x-108=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
9 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20208 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Wielomian
W(x)=2x^4-10x^3-46x^2-12x-47
przy dzieleniu przez wielomian
P(x)=2x^2+2 daje
resztę
ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz te wartości parametru
m ,
dla których wielomian
W(x)=(m-6)x^3+(m-8)x^2-(2m-11)x
ma trzy pierwiastki rzeczywiste.
Podaj najmniejsze m , które nie spełnia warunków
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe
m , które nie spełnia warunków
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(14-m)x-2m+12 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(14-m)x-2m+12
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż