Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+1)(n-170). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{n+1}{n+3} T/N : a_n=n^2-n-2
T/N : a_n=2-\frac{1}{2-3n}  
Zadanie 3.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 770/968 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 10,13,16 B. 9,12,15
C. 8,11,14 D. 11,14,17
Zadanie 4.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 3, a pierwszy wyraz tego ciągu jest równy -8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -\frac{2}{5} B. -\frac{4}{5}
C. -\frac{1}{10} D. -\frac{1}{5}
E. -\frac{2}{15} F. -\frac{3}{10}
Zadanie 5.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 164/256 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W ciągu arytmetycznym a_{7}=16 oraz a_{11}=32.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=81 i a_3=9, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 66/89 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{5}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. q=a_1^5 B. q^5=a_1
C. a_1=q D. a_1=\frac{1}{q^5}
Zadanie 8.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 324/518 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 3\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{3}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{3}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{3}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}+\frac{3}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm