Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+12}{n+1} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+3} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 168/222 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 27 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=n^2-n-2
T/N : a_n=12+n-n^2
T/N : a_n=\frac{1}{1-4n}
Zadanie 5. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Ciąg
(\sqrt{48}, b,\sqrt{108})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 812/977 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trzywyrazowy ciąg
(2,5,a-4) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 199/220 [90%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-3 , a pierwszy wyraz tego ciągu jest równy
-3 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{4}{3}
B. 6
C. 3
D. 8
E. 4
F. 2
Zadanie 8. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=15 i
a_8=-27 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=16 ,
a_2=8 ,
a_3=4 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{5} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
2 innych.
Ile nowych bakterii powstanie w ciągu 80 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 476/617 [77%]
Rozwiąż
Podpunkt 11.1 (0.2 pkt)
Trzywyrazowy ciąg
(12, 6, 2m-9)
jest geometryczny.
Ten ciąg jest:
Odpowiedzi:
Podpunkt 11.2 (0.8 pkt)
Odpowiedzi:
A. 4
B. 10
C. 9
D. 7
E. 8
F. 6
Zadanie 12. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{9}}{a_{7}}=
\frac{1}{36} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż