Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+11}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+1} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+3}{6k+5}
B. \frac{8k+5}{6k+1}
C. \frac{8k+3}{6k+1}
D. \frac{8k+5}{6k+5}
Zadanie 3. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 68/72 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 303 jest 15 -tym wyrazem ciągu:
Odpowiedzi:
A. (a_n)
B. (d_n)
C. (c_n)
D. (b_n)
Zadanie 4. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n}
T/N : a_n=\sqrt{n+3}
Zadanie 6. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 490/742 [66%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trzy liczby
x-15 ,
x-9
i
3x-37 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{78} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 369/379 [97%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
3 oraz
a_8=10 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 10
B. -2
C. 4
D. 7
E. 1
F. -5
Zadanie 8. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-16)\cdot 7 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 485/722 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(4-\sqrt{7}, x, 4+\sqrt{7})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=11 i
a_6=44 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 107/119 [89%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
125 .
Wynika z tego, że y jest równe:
Odpowiedzi:
A. -10
B. -\frac{5}{2}
C. -5
D. 5
E. \frac{5}{2}
F. 10
Zadanie 12. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg określony jest wzorem
a_n=2^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Rozwiąż