Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-80+28n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+7}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 266/282 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{5n^2+3n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 23 B. 48
C. 53 D. 63
E. 58 F. 38
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=-\frac{1}{4}n+10 T/N : a_n=n^2-n-2
T/N : a_n=n^2-124  
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{12}+a_{13}+a_{14}=\frac{39}{2}.

Oblicz a_{13}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+3, x+9 i 3x+17, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{72}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 154/183 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -7.

Wtedy:

Odpowiedzi:
A. a_{17}-a_{5}=-63 B. a_{17}-a_{5}=-98
C. a_{17}-a_{5}=-84 D. a_{17}-a_{5}=-105
E. a_{17}-a_{5}=-91 F. a_{17}-a_{5}=-112
G. a_{17}-a_{5}=-77 H. a_{17}-a_{5}=-56
Zadanie 8.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 485/718 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=4\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : drugi wyraz ciągu \left(a_n\right) jest równy 82 T/N : suma a_1+a_2 jest równa 100
Zadanie 9.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=4 i a_9=16.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) W ciągu geometrycznym \left(a_n\right), określonym dla każdego n\in\mathbb{N_+}, wyrazy drugi i szósty są równe odpowiednio a_2=9 i a_6=81.

Kwadrat wyrazu czwartego tego ciągu jest równy:

Odpowiedź:
a_4^2= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 473/731 [64%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 64, natomiast iloraz tego ciągu jest równy -\frac{1}{4}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wyraz a_{2087} jest dodatni T/N : suma a_2+a_3 jest równa 52
Zadanie 12.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 24\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{6}{100}\right) B. 1000\cdot\left(1+\left(\frac{24}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{6}{100}\right)^4 D. 1000\cdot\left(1+\frac{6}{400}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm