Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-205.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 786/849 [92%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+5), dla każdej dodatniej liczby naturalnej n.

Wyraz a_4 jest równy:

Odpowiedzi:
A. 288 B. 72
C. 320 D. 144
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 188/204 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{6n^2-11n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 31 B. 25
C. 37 D. 43
E. 61 F. 49
Zadanie 4.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\sqrt{3}n+1 T/N : a_n=1+\frac{1}{n}
T/N : a_n=n^2-n-2  
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/943 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{243}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 703/781 [90%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=9 oraz a_3=16.

9-ty wyraz tego ciągu a_{9} jest równy:

Odpowiedzi:
A. 72 B. 44
C. 65 D. 58
E. 51 F. 79
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 125/156 [80%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -6.

Wtedy:

Odpowiedzi:
A. a_{17}-a_{7}=-66 B. a_{17}-a_{7}=-84
C. a_{17}-a_{7}=-36 D. a_{17}-a_{7}=-48
E. a_{17}-a_{7}=-60 F. a_{17}-a_{7}=-54
G. a_{17}-a_{7}=-78 H. a_{17}-a_{7}=-72
Zadanie 8.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W kinie jest 38 rzędów krzeseł. Rząd pierwszy składa się z 12 krzeseł, a każdy następny rząd zawiera o 8 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=14-ty jest równy a_{14}=\sqrt{5}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{12}\cdot a_{13}\cdot a_{14}\cdot a_{15}\cdot a_{16} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=2401 i a_3=49, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x+3) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+1) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot -3 i y\lessdot -1 B. x > -3 i y > -1
C. x > -3 i y\lessdot -1 D. x \lessdot -3 i y > -1
Zadanie 12.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{121}{2}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm