Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-177.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 736/890 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-8}{5}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 26 jest równa:

Odpowiedzi:
A. 137 B. 136
C. 140 D. 141
E. 135 F. 139
Zadanie 3.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 106/128 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-71n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 15 B. 9
C. 23 D. 22
E. 25 F. 17
G. 24 H. 14
Zadanie 4.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 429/636 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n+6) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{108}, b,\sqrt{432}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 881/1039 [84%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzywyrazowy ciąg (3,12,a+4) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 432/491 [87%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=4 oraz a_3=12.

Wyraz a_{17} jest równy:

Odpowiedzi:
A. 56 B. 72
C. 44 D. 60
E. 88 F. 48
G. 52 H. 68
I. 40 J. 84
Zadanie 8.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=18 i a_8=-66.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \sqrt{101}-1, 3x+6 i \sqrt{101}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{9}=-\frac{1}{36} i a_{14}=216.

Wówczas wyraz a_{13} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 280/394 [71%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x+5) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+4) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot -5 i y\lessdot -4 B. x \lessdot -5 i y > -4
C. x > -5 i y > -4 D. x > -5 i y\lessdot -4
Zadanie 12.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{23}}{a_{21}}= \frac{1}{100}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm