Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-168+40n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 422. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 34/40 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 334 jest 14-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (a_n)
C. (b_n) D. (c_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=n^2-n-2 T/N : a_n=\frac{n+1}{n+3}
T/N : a_n=n^2-124  
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 892/1149 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=n^2
Zadanie 6.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 800/964 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzywyrazowy ciąg (4,12,a-4) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 212/205 [103%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=7n-5, b_n=6n^2+1, c_n=4^n, d_n=\frac{7}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg b_n jest arytmetyczny B. ciąg d_n jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. ciąg a_n jest arytmetyczny
Zadanie 8.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 410/628 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=3\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : suma a_1+a_2 jest równa 75 T/N : drugi wyraz ciągu \left(a_n\right) jest równy 63
Zadanie 9.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=10368 i b_5=8.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 762/842 [90%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+6) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -7 B. -3
C. -1 D. -2
E. -4 F. -5
Zadanie 11.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 277/390 [71%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x+3) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-3) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x > -3 i y > 3 B. x \lessdot -3 i y\lessdot 3
C. x > -3 i y\lessdot 3 D. x \lessdot -3 i y > 3
Zadanie 12.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{19}}{a_{17}}= \frac{1}{121}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm