Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-22n+56}{n^2+16}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 751/900 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-8}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 26 jest równa:

Odpowiedzi:
A. 57 B. 58
C. 61 D. 59
E. 63 F. 62
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 207/213 [97%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+2}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{3}{16} B. \frac{7}{75}
C. \frac{7}{50} D. \frac{1}{9}
E. \frac{9}{98} F. \frac{5}{18}
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{8}+a_{9}+a_{10}=\frac{39}{2}.

Oblicz a_{9}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 660/919 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{8}=30 i a_{15}=58.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 160/184 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -7.

Wtedy:

Odpowiedzi:
A. a_{19}-a_{8}=-98 B. a_{19}-a_{8}=-84
C. a_{19}-a_{8}=-91 D. a_{19}-a_{8}=-56
E. a_{19}-a_{8}=-105 F. a_{19}-a_{8}=-49
G. a_{19}-a_{8}=-63 H. a_{19}-a_{8}=-77
Zadanie 8.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz sumę 23 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-2\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=10 jest równy 5.

Oblicz a_{8}\cdot a_{12}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 60\%.

Po upływie 5 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+5\cdot 1.6) B. 1000\cdot (1+1.6^5)
C. 1000\cdot (1.6)^5 D. 1000\cdot (1+1.6)^5
Zadanie 11.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 520/660 [78%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-11) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. malejący B. rosnący
Podpunkt 11.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 5 B. 6
C. 7 D. 11
E. 3 F. 10
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 14\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{14}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}+\frac{14}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{14}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{14}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm