Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+1}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+3}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 168/222 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 27:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=n^2-n-2 T/N : a_n=12+n-n^2
T/N : a_n=\frac{1}{1-4n}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{48}, b,\sqrt{108}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 812/977 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzywyrazowy ciąg (2,5,a-4) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 199/220 [90%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -3, a pierwszy wyraz tego ciągu jest równy -3.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{4}{3} B. 6
C. 3 D. 8
E. 4 F. 2
Zadanie 8.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=15 i a_8=-27.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=16, a_2=8, a_3=4.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{5}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 2 innych.

Ile nowych bakterii powstanie w ciągu 80 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 476/617 [77%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-9) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. malejący B. rosnący
Podpunkt 11.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 4 B. 10
C. 9 D. 7
E. 8 F. 6
Zadanie 12.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{9}}{a_{7}}= \frac{1}{36}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm