Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-36n+130}{n^2+25} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+8} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 172/226 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 57 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
D. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1}
T/N : a_n=\frac{1}{1-4n}
T/N : a_n=4-\frac{7}{n}
Zadanie 5. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/943 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Ciąg
(\sqrt{147}, b,\sqrt{507})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 50,67,84
B. 51,68,85
C. 55,72,89
D. 53,70,87
Zadanie 7. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 403/465 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=11 oraz
a_3=17 .
Wyraz a_{8} jest równy:
Odpowiedzi:
A. 11
B. 38
C. 17
D. 29
E. 14
F. 23
G. 35
H. 20
I. 44
J. 32
Zadanie 8. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W kinie jest
38 rzędów krzeseł. Rząd pierwszy
składa się z
19 krzeseł, a każdy następny rząd
zawiera o
3 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
o numerze
k=13 jest równy
8 .
Oblicz a_{11}\cdot a_{15} .
Odpowiedź:
a_{k-2}\cdot a_{k+2}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pewien gatunek liczy
1000 osobników i co roku
jego liczebność rośnie o
80\% .
Po upływie 9 lat liczebność tego gatunku wyniesie:
Odpowiedzi:
A. 1000\cdot (1.8)^9
B. 1000\cdot (1+1.8)^9
C. 1000\cdot (1+9\cdot 1.8)
D. 1000\cdot (1+1.8^9)
Zadanie 11. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 66/72 [91%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trójwyrazowy ciąg
(6,x,54) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 18
B. 19
C. 14
D. 15
E. 16
F. 22
Zadanie 12. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{121}{5} , a jego iloraz wynosi
3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż