Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-185.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+4), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 288 B. 640
C. 576 D. 144
Zadanie 3.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 100/114 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-3)^n\cdot n-3 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -80 B. -100
C. -102 D. -66
E. -65 F. -71
G. -84 H. -64
Zadanie 4.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 6 i 14, a pewien wyraz tego ciągu a_k jest równy 62.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+2, x+8 i 3x+14, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{66}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -2 oraz a_8=-8.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -4 B. -6
C. -2 D. 0
E. -8 F. 2
Zadanie 8.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=19 i a_8=-30.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \sqrt{65}-1, 4x+2 i \sqrt{65}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 60\%.

Po upływie 6 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.6)^6 B. 1000\cdot (1.6)^6
C. 1000\cdot (1+6\cdot 1.6) D. 1000\cdot (1+1.6^6)
Zadanie 11.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 568/688 [82%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-5-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. -16 B. -4
C. -1 D. -6
E. -8 F. -2
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 16\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}+\frac{16}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm