Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-336+68n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+6}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 557/622 [89%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+9}{4}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -3 B. 3
C. -4 D. -\frac{5}{2}
E. -\frac{11}{4} F. -\frac{7}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/139 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1319/1504 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pomiędzy liczby 110 i 410 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 399/639 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+7, x+13 i 3x+29, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{77}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 142/165 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 1, a pierwszy wyraz tego ciągu jest równy 3.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{9}{2} B. \frac{3}{4}
C. 3 D. \frac{3}{2}
E. 6 F. \frac{9}{4}
Zadanie 8.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 490/914 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 247.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1409/2167 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg liczbowy \left(48,12,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 564/723 [78%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=4, a a_3=49.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 56/63 [88%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trójwyrazowy ciąg (4,x,196) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 32 B. 28
C. 30 D. 24
E. 31 F. 29
Zadanie 12.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 2000 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm