Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+1}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+3} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+11}{6k+7} B. \frac{8k+13}{6k+11}
C. \frac{8k+11}{6k+11} D. \frac{8k+13}{6k+7}
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 194/204 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n-2}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{1}{18} B. \frac{1}{16}
C. \frac{5}{98} D. \frac{1}{25}
E. \frac{1}{18} F. \frac{3}{50}
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{n-3}{4} T/N : a_n=\frac{6-2n}{3}
T/N : a_n=\frac{n+1}{n+3}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=n^2
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 659/918 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{6}=7 i a_{13}=14.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 244/236 [103%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=2n^2+2, b_n=4n-4, c_n=5^n, d_n=\frac{2}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg d_n jest arytmetyczny B. ciąg a_n jest arytmetyczny
C. ciąg b_n jest arytmetyczny D. żaden z ciągów nie jest arytmetyczny
Zadanie 8.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym a_{6}=-42 oraz a_{10}=-74.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \sqrt{65}-1, 3x+1 i \sqrt{65}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=256 i a_3=16, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/78 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{2}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=q B. a_1=\frac{1}{q^2}
C. q^2=a_1 D. q=a_1^2
Zadanie 12.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 364 B. 121
C. 40 D. 4
E. 123 F. 13


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm