Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-168+40n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{28} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. 10^{28}\right)-1 B. \left(10^{14}+1\right)^2
C. \left(10^{14}-1\right)^2 D. \left(10^{14}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 222/235 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{6n^2-17n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 25 B. 13
C. 19 D. 7
E. 49 F. 55
Zadanie 4.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2+3n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest monotoniczny
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{243}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 756/957 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 50,66,82 B. 49,65,81
C. 52,68,84 D. 48,64,80
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -9.

Wtedy:

Odpowiedzi:
A. a_{18}-a_{8}=-81 B. a_{18}-a_{8}=-90
C. a_{18}-a_{8}=-63 D. a_{18}-a_{8}=-126
E. a_{18}-a_{8}=-108 F. a_{18}-a_{8}=-99
G. a_{18}-a_{8}=-54 H. a_{18}-a_{8}=-72
Zadanie 8.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{41}=0.

Wówczas:

Odpowiedzi:
A. S_{82}=a_{82} B. S_{82} \lessdot a_{82}
C. S_{82}=0 D. S_{82} > a_{82}
Zadanie 9.  1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 480/717 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (12-3\sqrt{15}, x, 12+3\sqrt{15}) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=6, a a_3=\frac{27}{2}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/79 [72%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{2}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. q^2=a_1 B. a_1=\frac{1}{q^2}
C. a_1=q D. q=a_1^2
Zadanie 12.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3000 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm