Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-14n+20}{n^2+4} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
335 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 82/107 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=2n^2-21n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 21
B. 2
C. 10
D. 11
E. 14
F. 19
G. 4
H. 15
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=7-(n-1)^2
T/N : a_n=4-\frac{7}{n}
T/N : a_n=12+n-n^2
Zadanie 5. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=n^2
T/N : a_n=\sqrt{n+3}
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 18,24,30
B. 22,28,34
C. 19,25,31
D. 17,23,29
Zadanie 7. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 132/161 [81%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
-7 .
Wtedy:
Odpowiedzi:
A. a_{16}-a_{5}=-84
B. a_{16}-a_{5}=-56
C. a_{16}-a_{5}=-105
D. a_{16}-a_{5}=-70
E. a_{16}-a_{5}=-77
F. a_{16}-a_{5}=-98
G. a_{16}-a_{5}=-91
H. a_{16}-a_{5}=-63
Zadanie 8. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-15)\cdot 4 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg liczbowy
\left(16,4,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 345/526 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest geometryczny i niemonotoniczny,
w którym
a_{5}=-\frac{1}{4} i
a_{10}=8 .
Wówczas wyraz a_{9} jest równy:
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x-4) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y-5) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x \lessdot 4 i y > 5
B. x > 4 i y > 5
C. x \lessdot 4 i y\lessdot 5
D. x > 4 i y\lessdot 5
Zadanie 12. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 602/700 [86%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
5\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
4410.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 4500 zł
B. 4400 zł
C. 4300 zł
D. 4000 zł
E. 4200 zł
F. 3700 zł
Rozwiąż