Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 460/910 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-16n+24}{n^2+4}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+3}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 144/196 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 24:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 301/595 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=n^2-124 T/N : a_n=n^2-n-2
T/N : a_n=1-\frac{4}{n+1}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 428/496 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{8}+a_{9}+a_{10}=\frac{39}{2}.

Oblicz a_{9}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 674/750 [89%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=7 oraz a_3=13.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedzi:
A. 43 B. 49
C. 31 D. 37
E. 19 F. 25
Zadanie 7.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 143/166 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -2, a pierwszy wyraz tego ciągu jest równy -4.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{10}{3} B. \frac{20}{3}
C. \frac{10}{9} D. \frac{5}{2}
E. \frac{5}{6} F. \frac{5}{3}
Zadanie 8.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 448/600 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W kinie jest 25 rzędów krzeseł. Rząd pierwszy składa się z 13 krzeseł, a każdy następny rząd zawiera o 8 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=32, a_2=16, a_3=8.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{6}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 345/526 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{5}=-\frac{1}{9} i a_{10}=27.

Wówczas wyraz a_{9} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 529/643 [82%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (7-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. 4 B. 1
C. \frac{1}{2} D. 8
E. 2 F. 3
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 313/496 [63%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 7\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{7}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}+\frac{7}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{7}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{7}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm