Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-212.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+8}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{6n^2-5n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 25 B. 61
C. 19 D. 55
E. 37 F. 31
Zadanie 4.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/153 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=3n^2-5n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : wyraz a_{5} jest równy 50:
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\frac{-4n+16}{-2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 661/920 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{4}=-15 i a_{11}=-57.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=80.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 36 B. 26
C. 40 D. 54
E. 22 F. 47
G. 27 H. 30
Zadanie 8.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 497/867 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz sumę 29 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-3\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=2304 i b_5=9.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 100 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 233/308 [75%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 16a_5=81a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{9}{4} B. \frac{27}{16}
C. \frac{3}{2} D. \frac{27}{20}
E. \frac{27}{8} F. 3
Zadanie 12.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 816/929 [87%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Klient wpłacił do banku 49000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 5022.50 zł B. 4305.00 zł
C. 6027.00 zł D. 4018.00 zł
E. 4185.42 zł F. 6278.13 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm