Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-138.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 341. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 204/213 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n-3}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{2}{49} B. \frac{1}{25}
C. \frac{2}{75} D. \frac{1}{24}
E. 0 F. \frac{1}{32}
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{1}{1-4n} T/N : a_n=\frac{6-2n}{3}
T/N : a_n=4-\frac{7}{n}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -6 i 10, a pewien wyraz tego ciągu a_k jest równy 90.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 20,26,32 B. 18,24,30
C. 17,23,29 D. 19,25,31
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 155/183 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 8.

Wtedy:

Odpowiedzi:
A. a_{16}-a_{6}=48 B. a_{16}-a_{6}=104
C. a_{16}-a_{6}=72 D. a_{16}-a_{6}=88
E. a_{16}-a_{6}=96 F. a_{16}-a_{6}=80
G. a_{16}-a_{6}=64 H. a_{16}-a_{6}=56
Zadanie 8.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{15}=0.

Wówczas:

Odpowiedzi:
A. S_{30} \lessdot a_{30} B. S_{30}=0
C. S_{30}=a_{30} D. S_{30} > a_{30}
Zadanie 9.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=6 jest równy 9.

Oblicz a_{4}\cdot a_{8}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \frac{7^n}{\sqrt{7}} B. \left(\frac{\sqrt{7}}{7}\right)^n
C. \frac{\left(\sqrt{7}\right)^n}{7} D. (\sqrt{7})^n
Zadanie 11.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 713/900 [79%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=6.75 oraz a_2=-27.00.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{355}{4} B. \frac{175}{2}
C. \frac{351}{4} D. \frac{359}{4}
E. \frac{353}{4} F. \frac{349}{4}
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 7\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{7}{100}\right) B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{7}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{7}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}+\frac{7}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm