Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-288+60n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 440. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 67/71 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 297 jest 13-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (d_n)
C. (a_n) D. (c_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=n^2-n-2 T/N : a_n=-\frac{1}{4}n+10
T/N : a_n=\frac{1}{1-4n}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{363}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+6, x+12 i 3x+26, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{73}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 244/236 [103%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=6n-2, b_n=4n^2+4, c_n=5^n, d_n=\frac{9}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg b_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg a_n jest arytmetyczny D. ciąg c_n jest arytmetyczny
Zadanie 8.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Kamil każdego dnia czytał o 25 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 2082 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=8-ty jest równy a_{8}=\sqrt{6}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{6}\cdot a_{7}\cdot a_{8}\cdot a_{9}\cdot a_{10} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=8, a a_3=98.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 492/636 [77%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+3) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 11.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 3 B. -1
C. -2 D. 4
E. 0 F. 2
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 19\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{19}{100}\right) B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{19}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{19}{100}\right) D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{19}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm