Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-102+40n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+6} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+23}{6k+16} B. \frac{8k+25}{6k+20}
C. \frac{8k+25}{6k+16} D. \frac{8k+23}{6k+20}
Zadanie 3.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 108/129 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-58n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 11 B. 24
C. 20 D. 10
E. 14 F. 22
G. 8 H. 21
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\sqrt{3}n+1 T/N : a_n=n^2-124
T/N : a_n=1-\frac{4}{n+1}  
Zadanie 5.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+3.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+2, x+8 i 3x+14, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{76}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 319/277 [115%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pięciowyrazowy ciąg \left(6,\frac{19}{2},x,y,20\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=13 oraz y=\frac{33}{2} B. x=\frac{27}{2} oraz y=\frac{35}{2}
C. x=\frac{27}{2} oraz y=17 D. x=13 oraz y=\frac{35}{2}
E. x=14 oraz y=\frac{33}{2} F. x=14 oraz y=17
Zadanie 8.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz sumę 24 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-5\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n-7 jest ciągiem:
Odpowiedzi:
A. niemonotonicznym B. rosnącym
C. geometrycznym D. arytmetycznym
Zadanie 10.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1+6n}{-3}.

Ciąg ten jest:

Odpowiedzi:
A. arytmetyczny o różnicy r=-2 B. geometryczny o ilorazie q=-6
C. geometryczny o ilorazie q=-8 D. arytmetyczny o różnicy r=-4
Zadanie 11.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 78/84 [92%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trójwyrazowy ciąg (5,x,125) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 24 B. 25
C. 29 D. 21
E. 23 F. 26
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 16\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{16}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}+\frac{16}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm