Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 123/207 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+8)(n-65). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 49/105 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+7}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 22/29 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 198 jest 10-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (c_n)
C. (a_n) D. (d_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 253/428 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) zawiera liczbę 0 T/N : ciąg (a_n) jest monotoniczny
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 836/1086 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2} T/N : a_n=\sqrt{n+3}
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 657/886 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 41,55,69 B. 43,57,71
C. 42,56,70 D. 46,60,74
Zadanie 7.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 81/112 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=4n-2, b_n=7n^2-5, c_n=3^n, d_n=\frac{9}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg b_n jest arytmetyczny B. ciąg a_n jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. żaden z ciągów nie jest arytmetyczny
Zadanie 8.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 474/893 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 261.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 827/1162 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=8 i a_9=18.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 469/816 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) W ciągu geometrycznym \left(a_n\right), określonym dla każdego n\in\mathbb{N_+}, wyrazy drugi i szósty są równe odpowiednio a_2=9 i a_6=81.

Kwadrat wyrazu czwartego tego ciągu jest równy:

Odpowiedź:
a_4^2= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 40/47 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trójwyrazowy ciąg (3,x,48) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 15 B. 8
C. 16 D. 9
E. 12 F. 14
Zadanie 12.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 505/841 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 24\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{6}{400}\right)^4 B. 1000\cdot\left(1+\frac{6}{100}\right)
C. 1000\cdot\left(1+\frac{6}{100}\right)^4 D. 1000\cdot\left(1+\left(\frac{24}{100}\right)^4\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm