Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+8)(n-82). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 416. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 105/127 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-37n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 20 B. 16
C. 11 D. 9
E. 14 F. 19
G. 21 H. 15
Zadanie 4.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1721/2095 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 6 i 14, a pewien wyraz tego ciągu a_k jest równy 54.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 763/964 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 46,60,74 B. 42,56,70
C. 41,55,69 D. 43,57,71
Zadanie 7.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 192/212 [90%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=204.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 107 B. 87
C. 85 D. 99
E. 102 F. 82
G. 115 H. 101
Zadanie 8.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 322/473 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Kamil każdego dnia czytał o 21 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1734 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/989 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=5\cdot 7^{5-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 788/866 [90%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+5) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -1 B. 2
C. -2 D. -6
E. -3 F. 0
Zadanie 11.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/79 [72%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{4}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. q=a_1^4 B. a_1=\frac{1}{q^4}
C. a_1=q D. q^4=a_1
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 318/509 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 16\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{16}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}+\frac{16}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm