Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 627/1061 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-1024 jest mniejszych od 15876?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+8}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 103/119 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-4)^n\cdot n+1 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -207 B. -196
C. -208 D. -200
E. -178 F. -174
G. -191 H. -195
Zadanie 4.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-25n+25 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1-13.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 660/919 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{7}=34 i a_{14}=69.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 195/214 [91%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=204.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 119 B. 102
C. 112 D. 97
E. 96 F. 93
G. 87 H. 116
Zadanie 8.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{13} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=13 jest równy 7.

Oblicz a_{11}\cdot a_{15}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{338}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 712/900 [79%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=4.75 oraz a_2=-38.00.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{541}{2} B. \frac{1081}{4}
C. \frac{1091}{4} D. \frac{1087}{4}
E. \frac{1085}{4} F. \frac{1083}{4}
Zadanie 12.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 28\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{7}{100}\right)^4 B. 1000\cdot\left(1+\frac{7}{100}\right)
C. 1000\cdot\left(1+\frac{7}{400}\right)^4 D. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm