Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-151 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 786/849 [92%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+2) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_6 jest równy:
Odpowiedzi:
A. 1152
B. 1024
C. 512
D. 256
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 167/180 [92%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n-1}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{3}{32}
B. \frac{1}{9}
C. \frac{2}{25}
D. \frac{3}{49}
E. \frac{4}{75}
F. \frac{5}{72}
Zadanie 4. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 396/604 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n+1) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
T/N : ciąg (a_n) jest rosnący
Zadanie 5. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1+4 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 658/917 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{5}=-4 i
a_{12}=-18 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 406/468 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=-3 oraz
a_3=5 .
Wyraz a_{15} jest równy:
Odpowiedzi:
A. 73
B. 29
C. 49
D. 37
E. 53
F. 65
G. 33
H. 41
I. 69
J. 45
Zadanie 8. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W kinie jest
27 rzędów krzeseł. Rząd pierwszy
składa się z
15 krzeseł, a każdy następny rząd
zawiera o
7 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Liczby
\sqrt{26}-1 ,
3x+4 i
\sqrt{26}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{-1-n}{-2} .
Ciąg ten jest:
Odpowiedzi:
A. geometryczny o ilorazie q=\frac{3}{2}
B. arytmetyczny o różnicy r=\frac{1}{2}
C. arytmetyczny o różnicy r=1
D. geometryczny o ilorazie q=2
Zadanie 11. 1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 52/72 [72%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{4}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. a_1=q
B. q=a_1^4
C. q^4=a_1
D. a_1=\frac{1}{q^4}
Zadanie 12. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
2000 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż