Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1061 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-225 jest mniejszych od
12544 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
413 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 68/72 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 297 jest 13 -tym wyrazem ciągu:
Odpowiedzi:
A. (d_n)
B. (b_n)
C. (c_n)
D. (a_n)
Zadanie 4. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/146 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=4n^2-n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest malejący
T/N : wyraz a_{5} jest równy 95 :
Zadanie 5. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1721/2095 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
6
i
18 , a pewien wyraz tego ciągu
a_k
jest równy
84 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 875/1035 [84%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trzywyrazowy ciąg
(3,12,a-1) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pięciowyrazowy ciąg
\left(6,\frac{15}{2},x,y,12\right)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
A. x=10 oraz y=11
B. x=\frac{19}{2} oraz y=11
C. x=10 oraz y=\frac{21}{2}
D. x=9 oraz y=\frac{21}{2}
E. x=9 oraz y=\frac{23}{2}
F. x=\frac{19}{2} oraz y=\frac{23}{2}
Zadanie 8. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=19 i
a_8=-51 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
k=10 -ty jest równy
a_{10}=2\sqrt{2} .
Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu
a_{8}\cdot a_{9}\cdot a_{10}\cdot a_{11}\cdot a_{12}
.
Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=9 i
a_6=81 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 74/80 [92%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trójwyrazowy ciąg
(5,x,125) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 23
B. 28
C. 24
D. 26
E. 25
F. 22
Zadanie 12. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 614/717 [85%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
10\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
4840.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 4000 zł
B. 4400 zł
C. 3700 zł
D. 3800 zł
E. 3900 zł
F. 4500 zł
Rozwiąż