Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+1}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 733/887 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-6}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 12 jest równa:

Odpowiedzi:
A. 29 B. 33
C. 27 D. 28
E. 31 F. 32
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 217/229 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{4n^2-16n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 20 B. 16
C. 28 D. 4
E. 12 F. 8
Zadanie 4.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1} T/N : a_n=4-\frac{7}{n}
T/N : a_n=n^2-n-2  
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -1 i 3, a pewien wyraz tego ciągu a_k jest równy 21.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 438/446 [98%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-30 oraz a_{10}=-65. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -7 B. 1
C. 2 D. -11
E. -\frac{11}{2} F. -10
Zadanie 7.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -4 oraz a_8=-29.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -21 B. -13
C. -29 D. -25
E. -17 F. -9
Zadanie 8.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym a_{3}=-17 oraz a_{7}=-49.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+8n+12 jest ciągiem:
Odpowiedzi:
A. geometrycznym B. arytmetycznym
C. niemonotonicznym D. rosnącym
Zadanie 10.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 2 innych.

Ile nowych bakterii powstanie w ciągu 60 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-1) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-5) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot 1 i y > 5 B. x > 1 i y\lessdot 5
C. x \lessdot 1 i y\lessdot 5 D. x > 1 i y > 5
Zadanie 12.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 607/707 [85%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 5408.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3300 B. 3600
C. 3200 D. 3100
E. 3800 F. 3000


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm