Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-152.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 740/894 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-5}{4}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 22 jest równa:

Odpowiedzi:
A. 95 B. 90
C. 94 D. 91
E. 92 F. 96
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 237/250 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2+4n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 31 B. 34
C. 19 D. 22
E. 25 F. 40
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-17n+17 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{12}+a_{13}+a_{14}=\frac{33}{2}.

Oblicz a_{13}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 660/919 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{8}=18 i a_{15}=32.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 152/179 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 3.

Wtedy:

Odpowiedzi:
A. a_{15}-a_{6}=27 B. a_{15}-a_{6}=15
C. a_{15}-a_{6}=39 D. a_{15}-a_{6}=30
E. a_{15}-a_{6}=21 F. a_{15}-a_{6}=36
G. a_{15}-a_{6}=18 H. a_{15}-a_{6}=33
Zadanie 8.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=15 i a_8=-48.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/989 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=9\cdot 4^{6-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{98}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 592/716 [82%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. -8 B. -2
C. -4 D. -3
E. -\frac{1}{2} F. -1
Zadanie 12.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 12\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\left(\frac{12}{100}\right)^4\right) B. 1000\cdot\left(1+\frac{3}{400}\right)^4
C. 1000\cdot\left(1+\frac{3}{100}\right) D. 1000\cdot\left(1+\frac{3}{100}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm