Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+13}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+6} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 194/204 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+3}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{5}{49}
B. \frac{7}{32}
C. \frac{4}{25}
D. \frac{1}{8}
E. \frac{1}{3}
F. \frac{8}{75}
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=n^2-124
T/N : a_n=n^2-n-2
T/N : a_n=1-\frac{4}{n+1}
Zadanie 5. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{14}+a_{15}+a_{16}=\frac{27}{2} .
Oblicz a_{15} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 42,56,70
B. 43,57,71
C. 41,55,69
D. 46,60,74
Zadanie 7. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=20 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 14
B. 20
C. 16
D. 10
E. 18
F. 12
Zadanie 8. 1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 449/674 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=3\cdot(7^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 18
T/N : różnica a_2-a_1 jest równa 108
Zadanie 9. 1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(b_n) jest geometryczny, w krórym dane są
dwa wyrazy
b_1=9072 i
b_5=7 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» W ciągu geometrycznym
(a_n) dane są:
a_1=1296 i
a_3=36 , a czwarty wyraz tego ciągu
jest ujemny.
Wyznacz a_4 .
Odpowiedź:
a_4=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 699/886 [78%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=6.75 oraz
a_2=-40.50 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedzi:
A. \frac{835}{4}
B. \frac{841}{4}
C. \frac{839}{4}
D. 209
E. \frac{837}{4}
F. \frac{845}{4}
Zadanie 12. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 797/910 [87%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Klient wpłacił do banku
39000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
11\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 7543.25 zł
B. 7241.52 zł
C. 10862.28 zł
D. 7758.77 zł
E. 9051.90 zł
F. 11314.88 zł
Rozwiąż