Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-264+56n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 950/1088 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 452. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 76/80 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 414 jest 16-tym wyrazem ciągu:

Odpowiedzi:
A. (c_n) B. (d_n)
C. (b_n) D. (a_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/141 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-25n+25 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{16}+a_{17}+a_{18}=\frac{39}{2}.

Oblicz a_{17}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/747 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy liczby x+8, x+14 i 3x+32, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{80}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 6, a pierwszy wyraz tego ciągu jest równy 8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{39}{7} B. \frac{52}{7}
C. \frac{13}{14} D. \frac{26}{7}
E. \frac{13}{7} F. \frac{39}{14}
Zadanie 8.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 80/145 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 1001 jest równa:
Odpowiedzi:
A. \frac{2+1001}{2}\cdot 500 B. \frac{2+2002}{2}\cdot 1001
C. \frac{2+2002}{2}\cdot 500 D. \frac{2+500}{2}\cdot 1001
E. \frac{2+1000}{2}\cdot 1001 F. \frac{2+500}{2}\cdot 500
G. \frac{2+1000}{2}\cdot 500 H. \frac{2+1001}{2}\cdot 1001
Zadanie 9.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=14-ty jest równy a_{14}=2\sqrt{3}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{12}\cdot a_{13}\cdot a_{14}\cdot a_{15}\cdot a_{16} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 200 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 118/127 [92%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy 216.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. -6 B. 3
C. 12 D. 6
E. -12 F. -3
Zadanie 12.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 816/929 [87%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Klient wpłacił do banku 43000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 6\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 4555.54 zł B. 6643.50 zł
C. 4251.84 zł D. 5314.80 zł
E. 4429.00 zł F. 6377.76 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm