Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-180.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 404. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 32/38 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 373 jest 15-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (c_n)
C. (d_n) D. (a_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1-3.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 39,52,65 B. 38,51,64
C. 41,54,67 D. 43,56,69
Zadanie 7.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 154/179 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=188.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 106 B. 110
C. 84 D. 79
E. 94 F. 92
G. 103 H. 109
Zadanie 8.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Kamil każdego dnia czytał o 20 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1728 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=8 i a_9=18.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 60\%.

Po upływie 9 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.6^9) B. 1000\cdot (1+9\cdot 1.6)
C. 1000\cdot (1.6)^9 D. 1000\cdot (1+1.6)^9
Zadanie 11.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 60/67 [89%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trójwyrazowy ciąg (6,x,216) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 36 B. 33
C. 40 D. 38
E. 39 F. 34
Zadanie 12.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 183/225 [81%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 5461 B. 1365
C. 341 D. 5463
E. 21845 F. 85


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm