Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+1}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 752/901 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-4}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 22 jest równa:

Odpowiedzi:
A. 49 B. 51
C. 50 D. 47
E. 46 F. 45
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2-12n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 3 B. 15
C. 24 D. 21
E. 9 F. 18
Zadanie 4.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1} T/N : a_n=\frac{1}{1-4n}
T/N : a_n=n^2-124  
Zadanie 5.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{9}+a_{10}+a_{11}=\frac{33}{2}.

Oblicz a_{10}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 899/1051 [85%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzywyrazowy ciąg (2,5,a+1) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 382/387 [98%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-26.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -11 B. -26
C. -23 D. -14
E. -17 F. -20
Zadanie 8.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{7} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n+5 jest ciągiem:
Odpowiedzi:
A. rosnącym B. niemonotonicznym
C. arytmetycznym D. geometrycznym
Zadanie 10.  1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) W ciągu geometrycznym \left(a_n\right), określonym dla każdego n\in\mathbb{N_+}, wyrazy drugi i szósty są równe odpowiednio a_2=4 i a_6=16.

Kwadrat wyrazu czwartego tego ciągu jest równy:

Odpowiedź:
a_4^2= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 104/116 [89%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrzowy ciąg \left(24,3x,\frac{2}{3}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. 2 B. \frac{4}{9}
C. \frac{4}{3} D. \frac{1}{3}
E. \frac{2}{3} F. \frac{8}{9}
Zadanie 12.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 813/926 [87%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Klient wpłacił do banku 21000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 3\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 1023.12 zł B. 1534.68 zł
C. 1096.20 zł D. 1065.75 zł
E. 1278.90 zł F. 1598.63 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm