Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/233 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+8)(n-197) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 813/873 [93%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+4) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_7 jest równy:
Odpowiedzi:
A. 704
B. 2816
C. 3072
D. 1408
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 667/735 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+9}{5} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{14}{5}
B. -2
C. -\frac{16}{5}
D. \frac{12}{5}
E. -\frac{11}{5}
F. -\frac{12}{5}
Zadanie 4. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2}
T/N : a_n=\sqrt{n+3}
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 40,53,66
B. 41,54,67
C. 39,52,65
D. 43,56,69
Zadanie 7. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 150/177 [84%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
6 .
Wtedy:
Odpowiedzi:
A. a_{19}-a_{7}=72
B. a_{19}-a_{7}=48
C. a_{19}-a_{7}=78
D. a_{19}-a_{7}=54
E. a_{19}-a_{7}=96
F. a_{19}-a_{7}=66
G. a_{19}-a_{7}=84
H. a_{19}-a_{7}=60
Zadanie 8. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=19 i
a_8=-58 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Liczby
\sqrt{50}-1 ,
4x+5 i
\sqrt{50}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W malejącym ciągu geometrycznym pierwszy wyraz jest równy
\frac{242}{3} , a wyraz trzeci jest równy
0,(6) .
Piąty wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 192/249 [77%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wszystkie wyrazy nieskończonego ciągu geometrycznego
\left(a_n\right) , określonego dla każdej
liczby naturalnej
n\geqslant 1 , są dodatnie i
64a_5=49a_3 .
Wtedy iloraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{21}{32}
B. \frac{7}{12}
C. \frac{21}{40}
D. \frac{21}{16}
E. \frac{7}{8}
F. \frac{7}{4}
Zadanie 12. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 605/705 [85%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
9295.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 5600 zł
B. 5500 zł
C. 5900 zł
D. 5400 zł
E. 5800 zł
F. 5200 zł
Rozwiąż