Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+12}{n+1} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 733/887 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-6}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 12 jest równa:
Odpowiedzi:
A. 29
B. 33
C. 27
D. 28
E. 31
F. 32
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 217/229 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{4n^2-16n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 20
B. 16
C. 28
D. 4
E. 12
F. 8
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1}
T/N : a_n=4-\frac{7}{n}
T/N : a_n=n^2-n-2
Zadanie 5. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-1
i
3 , a pewien wyraz tego ciągu
a_k
jest równy
21 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 438/446 [98%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-30 oraz
a_{10}=-65 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -7
B. 1
C. 2
D. -11
E. -\frac{11}{2}
F. -10
Zadanie 7. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
-4 oraz
a_8=-29 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. -21
B. -13
C. -29
D. -25
E. -17
F. -9
Zadanie 8. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
a_{3}=-17 oraz
a_{7}=-49 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg określony wzorem
a_n=n^2+8n+12 jest ciągiem:
Odpowiedzi:
A. geometrycznym
B. arytmetycznym
C. niemonotonicznym
D. rosnącym
Zadanie 10. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
2 innych.
Ile nowych bakterii powstanie w ciągu 60 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x-1) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y-5) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x \lessdot 1 i y > 5
B. x > 1 i y\lessdot 5
C. x \lessdot 1 i y\lessdot 5
D. x > 1 i y > 5
Zadanie 12. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 607/707 [85%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
5408.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 3300 zł
B. 3600 zł
C. 3200 zł
D. 3100 zł
E. 3800 zł
F. 3000 zł
Rozwiąż