Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-110+32n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 622/763 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-9}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 10 jest równa:

Odpowiedzi:
A. 31 B. 30
C. 27 D. 32
E. 26 F. 28
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 117 jest 7-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (c_n)
C. (b_n) D. (a_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 885/1139 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3} T/N : a_n=\frac{1}{n}
Zadanie 6.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 640/898 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{8}=-33 i a_{15}=-68.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 109/141 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -10.

Wtedy:

Odpowiedzi:
A. a_{19}-a_{5}=-110 B. a_{19}-a_{5}=-130
C. a_{19}-a_{5}=-180 D. a_{19}-a_{5}=-150
E. a_{19}-a_{5}=-140 F. a_{19}-a_{5}=-120
G. a_{19}-a_{5}=-170 H. a_{19}-a_{5}=-100
Zadanie 8.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 401/616 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=4\cdot(2^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 4 T/N : różnica a_2-a_1 jest równa 4
Zadanie 9.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=11 jest równy 4.

Oblicz a_{9}\cdot a_{13}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=1296 i a_3=36, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 69/89 [77%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrzowy ciąg \left(88,3x,\frac{11}{8}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{11}{9} B. \frac{22}{3}
C. \frac{11}{6} D. \frac{11}{2}
E. \frac{22}{9} F. \frac{11}{3}
Zadanie 12.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/497 [63%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 15\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{15}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{15}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{15}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{15}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm