Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 460/910 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-30n+72}{n^2+9} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+4} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 557/622 [89%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+6}{5} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{11}{5}
B. -\frac{8}{5}
C. -\frac{9}{5}
D. -\frac{7}{5}
E. -\frac{13}{5}
F. \frac{9}{5}
Zadanie 4. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{1}{1-4n}
T/N : a_n=n^2-124
T/N : a_n=12+n-n^2
Zadanie 5. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 885/1137 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3}
T/N : a_n=n^2
Zadanie 6. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 401/642 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trzy liczby
x-5 ,
x+1
i
3x-7 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{78} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 288/296 [97%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
4 oraz
a_8=27 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 7
B. 11
C. 15
D. 19
E. 23
F. 27
Zadanie 8. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1245/1427 [87%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=16 i
a_8=-68 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 898/1159 [77%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(b_n) jest geometryczny, w krórym dane są
dwa wyrazy
b_1=12005 i
b_5=5 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu geometrycznym
(a_n) dane sa wyrazy:
a_1=\sqrt{m} ,
a_2=m\sqrt{m} ,
a_3=m^2\sqrt{m} .
Wzór na n -ty wyraz tego ciągu ma postać:
Odpowiedzi:
A. \frac{11^n}{\sqrt{11}}
B. \frac{\left(\sqrt{11}\right)^n}{11}
C. \left(\frac{\sqrt{11}}{11}\right)^n
D. (\sqrt{11})^n
Zadanie 11. 1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 529/643 [82%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trzywyrazowy ciąg
(-7-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedzi:
A. -\frac{5}{2}
B. -10
C. -\frac{15}{2}
D. -5
E. -\frac{5}{4}
F. -20
Zadanie 12. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg określony jest wzorem
a_n=3^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Rozwiąż