Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-113 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
305 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 667/735 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+1}{3} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -2
B. -\frac{8}{3}
C. \frac{4}{3}
D. -\frac{4}{3}
E. -\frac{2}{3}
F. -1
Zadanie 4. 1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest rosnący.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Ciąg
(\sqrt{27}, b,\sqrt{75})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 13,16,19
B. 9,12,15
C. 10,13,16
D. 11,14,17
Zadanie 7. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 190/211 [90%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=72 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 34
B. 32
C. 53
D. 33
E. 29
F. 40
G. 51
H. 36
Zadanie 8. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/131 [32%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{5}=0 .
Wówczas:
Odpowiedzi:
A. S_{10} > a_{10}
B. S_{10}=a_{10}
C. S_{10} \lessdot a_{10}
D. S_{10}=0
Zadanie 9. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 477/711 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(4-\sqrt{7}, x, 4+\sqrt{7})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{-6+3n}{3} .
Ciąg ten jest:
Odpowiedzi:
A. arytmetyczny o różnicy r=2
B. arytmetyczny o różnicy r=1
C. geometryczny o ilorazie q=3
D. geometryczny o ilorazie q=4
Zadanie 11. 1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 106/118 [89%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
-27 .
Wynika z tego, że y jest równe:
Odpowiedzi:
A. -\frac{3}{2}
B. -3
C. \frac{3}{2}
D. -6
E. 3
F. 6
Zadanie 12. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 796/909 [87%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Klient wpłacił do banku
10000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
4\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 1020.00 zł
B. 652.80 zł
C. 680.00 zł
D. 979.20 zł
E. 699.43 zł
F. 816.00 zł
Rozwiąż