Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 616/1050 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-4225 jest mniejszych od 5184?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 706/762 [92%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+3), dla każdej dodatniej liczby naturalnej n.

Wyraz a_6 jest równy:

Odpowiedzi:
A. 1280 B. 576
C. 1152 D. 288
Zadanie 3.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 389 jest 14-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (a_n)
C. (c_n) D. (d_n)
Zadanie 4.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 247/410 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-17n+17 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1033/1290 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+3.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 389/400 [97%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-5 oraz a_{10}=-30. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -\frac{5}{2} B. -7
C. -9 D. -13
E. -5 F. 3
Zadanie 7.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 164/187 [87%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -4, a pierwszy wyraz tego ciągu jest równy 6.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -\frac{3}{2} B. -3
C. -\frac{9}{2} D. -6
E. -9 F. -2
Zadanie 8.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 481/852 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz sumę 19 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-5\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \sqrt{101}-1, 3x+5 i \sqrt{101}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 694/774 [89%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+5) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -1 B. -3
C. -2 D. -4
E. 0 F. -6
Zadanie 11.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 56/63 [88%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trójwyrazowy ciąg (5,x,245) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 32 B. 35
C. 38 D. 31
E. 37 F. 36
Zadanie 12.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 588/683 [86%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 7986.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 7200 B. 6800
C. 6900 D. 6600
E. 6400 F. 6200


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm