Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-212 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+8} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{6n^2-5n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 25
B. 61
C. 19
D. 55
E. 37
F. 31
Zadanie 4. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/153 [80%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=3n^2-5n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest malejący
T/N : wyraz a_{5} jest równy 50 :
Zadanie 5. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n}
T/N : a_n=\frac{-4n+16}{-2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 661/920 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{4}=-15 i
a_{11}=-57 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=80 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 36
B. 26
C. 40
D. 54
E. 22
F. 47
G. 27
H. 30
Zadanie 8. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 497/867 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz sumę
29 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-3\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(b_n) jest geometryczny, w krórym dane są
dwa wyrazy
b_1=2304 i
b_5=9 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 100 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 233/308 [75%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wszystkie wyrazy nieskończonego ciągu geometrycznego
\left(a_n\right) , określonego dla każdej
liczby naturalnej
n\geqslant 1 , są dodatnie i
16a_5=81a_3 .
Wtedy iloraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{9}{4}
B. \frac{27}{16}
C. \frac{3}{2}
D. \frac{27}{20}
E. \frac{27}{8}
F. 3
Zadanie 12. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 816/929 [87%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Klient wpłacił do banku
49000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
5\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 5022.50 zł
B. 4305.00 zł
C. 6027.00 zł
D. 4018.00 zł
E. 4185.42 zł
F. 6278.13 zł
Rozwiąż