Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+3)(n-10) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+2} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 108/119 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot n-6 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -9
B. -28
C. -6
D. -20
E. -27
F. 9
G. -5
H. -25
Zadanie 4. 1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{n+1}{n+3}
T/N : a_n=1-\frac{4}{n+1}
T/N : a_n=7-(n-1)^2
Zadanie 5. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1-6 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 19,25,31
B. 17,23,29
C. 22,28,34
D. 18,24,30
Zadanie 7. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 200/214 [93%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=160 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 70
B. 99
C. 88
D. 93
E. 80
F. 98
G. 68
H. 71
Zadanie 8. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{13}=0 .
Wówczas:
Odpowiedzi:
A. S_{26}=0
B. S_{26} \lessdot a_{26}
C. S_{26}=a_{26}
D. S_{26} > a_{26}
Zadanie 9. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg liczbowy
\left(16,4,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pewien gatunek liczy
1000 osobników i co roku
jego liczebność rośnie o
20\% .
Po upływie 5 lat liczebność tego gatunku wyniesie:
Odpowiedzi:
A. 1000\cdot (1.2)^5
B. 1000\cdot (1+1.2^5)
C. 1000\cdot (1+5\cdot 1.2)
D. 1000\cdot (1+1.2)^5
Zadanie 11. 1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 62/84 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{2}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. a_1=\frac{1}{q^2}
B. q=a_1^2
C. q^2=a_1
D. a_1=q
Zadanie 12. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{5}}{a_{3}}=
\frac{1}{25} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż