Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 627/1061 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-169 jest mniejszych od
7056 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
10^{24} jest jednym z wyrazów ciągu kwadratów
kolejnych liczb naturalnych
1,2,4,9,16,... .
Poprzednim wyrazem tego ciągu jest liczba:
Odpowiedzi:
A. \left(10^{12}\right)^2
B. 10^{24}\right)-1
C. \left(10^{12}+1\right)^2
D. \left(10^{12}-1\right)^2
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 196/206 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+2}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{3}{16}
B. \frac{7}{50}
C. \frac{1}{9}
D. \frac{5}{18}
E. \frac{9}{98}
F. \frac{7}{75}
Zadanie 4. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1+12 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 749/825 [90%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=8
oraz
a_3=15 .
6-ty wyraz tego ciągu a_{6} jest równy:
Odpowiedzi:
A. 36
B. 57
C. 29
D. 50
E. 22
F. 43
Zadanie 7. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 193/213 [90%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=132 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 51
B. 83
C. 76
D. 78
E. 66
F. 53
G. 64
H. 56
Zadanie 8. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W kinie jest
32 rzędów krzeseł. Rząd pierwszy
składa się z
14 krzeseł, a każdy następny rząd
zawiera o
10 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
k=11 -ty jest równy
a_{11}=\sqrt{7} .
Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu
a_{9}\cdot a_{10}\cdot a_{11}\cdot a_{12}\cdot a_{13}
.
Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest geometryczny i niemonotoniczny,
w którym
a_{9}=-\frac{1}{16} i
a_{14}=64 .
Wówczas wyraz a_{13} jest równy:
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 109/121 [90%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
8 .
Wynika z tego, że y jest równe:
Odpowiedzi:
A. 2
B. -4
C. -1
D. 1
E. -2
F. 4
Zadanie 12. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 615/718 [85%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
25\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
6875.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 4400 zł
B. 4700 zł
C. 4200 zł
D. 5000 zł
E. 4300 zł
F. 4900 zł
Rozwiąż