Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+11}{n+1} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
335 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 667/735 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+3}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -4
B. -5
C. -3
D. -2
E. 3
F. -\frac{5}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-13n+13 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-7
i
-3 , a pewien wyraz tego ciągu
a_k
jest równy
23 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 440/449 [97%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-44 oraz
a_{10}=-84 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -4
B. -15
C. -7
D. -\frac{13}{2}
E. -11
F. -8
Zadanie 7. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 233/249 [93%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-6 , a pierwszy wyraz tego ciągu jest równy
-5 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{23}{11}
B. \frac{69}{11}
C. \frac{46}{33}
D. \frac{46}{11}
E. \frac{92}{11}
F. \frac{69}{22}
Zadanie 8. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{6} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg liczbowy
\left(16,4,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W malejącym ciągu geometrycznym pierwszy wyraz jest równy
\frac{50}{3} , a wyraz trzeci jest równy
0,(6) .
Piąty wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 468/724 [64%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dany jest ciąg geometryczny
\left(a_n\right) określony dla każdej liczby
naturalnej
n\geqslant 1 . Pierwszy wyraz tego ciągu jest równy
2 , natomiast iloraz tego ciągu jest równy
-\frac{1}{2} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : suma a_2+a_3 jest równa \frac{3}{2}
T/N : a_4=\frac{1}{2}
Zadanie 12. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
8\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{2}{400}\right)^4
B. 1000\cdot\left(1+\frac{2}{100}\right)^4
C. 1000\cdot\left(1+\left(\frac{8}{100}\right)^4\right)
D. 1000\cdot\left(1+\frac{2}{100}\right)
Rozwiąż