Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+14}{n+2}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+7} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+29}{6k+19} B. \frac{8k+29}{6k+23}
C. \frac{8k+27}{6k+19} D. \frac{8k+27}{6k+23}
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{6n^2+7n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 61 B. 37
C. 67 D. 49
E. 55 F. 43
Zadanie 4.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/152 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=4n^2+n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny T/N : wyraz a_{7} jest równy 203:
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 720/945 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{363}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 52,68,84 B. 48,64,80
C. 47,63,79 D. 49,65,81
Zadanie 7.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 456/509 [89%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=11 oraz a_3=13.

Wyraz a_{13} jest równy:

Odpowiedzi:
A. 24 B. 27
C. 21 D. 23
E. 28 F. 16
G. 19 H. 20
I. 18 J. 25
Zadanie 8.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym a_{5}=19 oraz a_{9}=31.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 490/726 [67%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (13-4\sqrt{10}, x, 13+4\sqrt{10}) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=2401 i a_3=49, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 521/661 [78%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+5) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 11.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -5 B. -4
C. 0 D. -1
E. 2 F. 1
Zadanie 12.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4700 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm