Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-8n+6}{n^2+1}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 329. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 678/742 [91%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+3}{2}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -3 B. -4
C. -5 D. 3
E. -\frac{5}{2} F. -2
Zadanie 4.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-13n+13 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3} T/N : a_n=\frac{1}{n}
Zadanie 6.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 783/856 [91%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=11.

9-ty wyraz tego ciągu a_{9} jest równy:

Odpowiedzi:
A. 51 B. 56
C. 31 D. 36
E. 41 F. 46
Zadanie 7.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 456/509 [89%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-8 oraz a_3=-16.

Wyraz a_{15} jest równy:

Odpowiedzi:
A. -80 B. -68
C. -84 D. -72
E. -36 F. -64
G. -40 H. -44
I. -76 J. -60
Zadanie 8.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{5} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=9 i a_9=16.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{4}=-\frac{1}{4} i a_{9}=8.

Wówczas wyraz a_{8} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 233/308 [75%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 4a_5=9a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. 1 B. \frac{9}{4}
C. 3 D. \frac{9}{10}
E. \frac{3}{2} F. 2
Zadanie 12.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg określony jest wzorem a_n=2^n.

Oblicz S_{6}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm