Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+11}{n+3}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 826/886 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 512 B. 1024
C. 2304 D. 2048
Zadanie 3.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 101/117 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n+5 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -14 B. 12
C. 0 D. 13
E. 2 F. -17
G. 20 H. -18
Zadanie 4.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{3}{2n+3} T/N : a_n=n^2-n-2
T/N : a_n=7-(n-1)^2  
Zadanie 5.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Ciąg (\sqrt{27}, b,\sqrt{243}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 762/840 [90%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=8 oraz a_3=14.

7-ty wyraz tego ciągu a_{7} jest równy:

Odpowiedzi:
A. 26 B. 50
C. 56 D. 38
E. 32 F. 44
Zadanie 7.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 372/382 [97%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 3 oraz a_8=11.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 5 B. -1
C. 8 D. 11
E. 2 F. -4
Zadanie 8.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym a_{5}=25 oraz a_{9}=57.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \sqrt{50}-1, 2x+6 i \sqrt{50}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{-2+3n}{-3}.

Ciąg ten jest:

Odpowiedzi:
A. geometryczny o ilorazie q=-4 B. arytmetyczny o różnicy r=-2
C. arytmetyczny o różnicy r=-1 D. geometryczny o ilorazie q=-3
Zadanie 11.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 281/397 [70%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-2) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+4) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot 2 i y\lessdot -4 B. x > 2 i y > -4
C. x > 2 i y\lessdot -4 D. x \lessdot 2 i y > -4
Zadanie 12.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 4\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{1}{400}\right)^4 B. 1000\cdot\left(1+\frac{1}{100}\right)^4
C. 1000\cdot\left(1+\left(\frac{4}{100}\right)^4\right) D. 1000\cdot\left(1+\frac{1}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm