Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-180 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
404 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 32/38 [84%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 373 jest 15 -tym wyrazem ciągu:
Odpowiedzi:
A. (b_n)
B. (c_n)
C. (d_n)
D. (a_n)
Zadanie 4. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1-3 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 39,52,65
B. 38,51,64
C. 41,54,67
D. 43,56,69
Zadanie 7. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 154/179 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=188 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 106
B. 110
C. 84
D. 79
E. 94
F. 92
G. 103
H. 109
Zadanie 8. 1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Kamil każdego dnia czytał o
20 stron książki
więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał
1728 stron.
Ile stron przeczytał pierwszego dnia?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=8 i
a_9=18 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pewien gatunek liczy
1000 osobników i co roku
jego liczebność rośnie o
60\% .
Po upływie 9 lat liczebność tego gatunku wyniesie:
Odpowiedzi:
A. 1000\cdot (1+1.6^9)
B. 1000\cdot (1+9\cdot 1.6)
C. 1000\cdot (1.6)^9
D. 1000\cdot (1+1.6)^9
Zadanie 11. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 60/67 [89%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trójwyrazowy ciąg
(6,x,216) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 36
B. 33
C. 40
D. 38
E. 39
F. 34
Zadanie 12. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 183/225 [81%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 5461
B. 1365
C. 341
D. 5463
E. 21845
F. 85
Rozwiąż