Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-576 jest mniejszych od 4900?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 335/346 [96%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -2 oraz a_8=-11.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -1 B. -11
C. -3 D. -7
E. -5 F. -9
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 75/138 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 651 jest równa:
Odpowiedzi:
A. \frac{2+651}{2}\cdot 325 B. \frac{2+1302}{2}\cdot 651
C. \frac{2+1302}{2}\cdot 325 D. \frac{2+325}{2}\cdot 651
E. \frac{2+650}{2}\cdot 651 F. \frac{2+650}{2}\cdot 325
G. \frac{2+325}{2}\cdot 325 H. \frac{2+651}{2}\cdot 651
Zadanie 4.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/988 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=9\cdot 8^{5-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3500 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=2000
d=1000
p=4.5
n=7
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 58/132 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-1680.

Oblicz różnicę ciągu (a_n).

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 9 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 4 większy od wyrazu czwartego tego ciągu.

Wyznacz a_3.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 (1 pkt) Wyznacz a_4.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm