Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2+3n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : wyraz a_{8} jest równy 152: T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 2.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pięciowyrazowy ciąg \left(-5,-\frac{17}{2},x,y,-19\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=-11 oraz y=-15 B. x=-\frac{23}{2} oraz y=-\frac{29}{2}
C. x=-11 oraz y=-\frac{31}{2} D. x=-\frac{23}{2} oraz y=-15
E. x=-12 oraz y=-\frac{31}{2} F. x=-12 oraz y=-\frac{29}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{17}=0.

Wówczas:

Odpowiedzi:
A. S_{34} \lessdot a_{34} B. S_{34}=a_{34}
C. S_{34} > a_{34} D. S_{34}=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{392}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 8\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{8}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{8}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{8}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{8}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{21}{2}=-10.50000000000000
c=26=26.00000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 361/960 [37%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczby 2x+1, 12x, 14x+26 są w podanej kolejności pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=4
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm