Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 645/716 [90%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+3}{5} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -1
B. -\frac{6}{5}
C. \frac{6}{5}
D. -2
E. -\frac{4}{5}
F. -\frac{8}{5}
Zadanie 2. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 840/1004 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trzywyrazowy ciąg
(1,9,a-4) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/131 [32%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{13}=0 .
Wówczas:
Odpowiedzi:
A. S_{26} > a_{26}
B. S_{26} \lessdot a_{26}
C. S_{26}=a_{26}
D. S_{26}=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczby
\sqrt{10}-1 ,
2x+5 i
\sqrt{10}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
8\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{2}{100}\right)
B. 1000\cdot\left(1+\frac{2}{400}\right)^4
C. 1000\cdot\left(1+\frac{2}{100}\right)^4
D. 1000\cdot\left(1+\left(\frac{8}{100}\right)^4\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dany jest ciąg
a_n=an^2+bn+c , dla
n\in\mathbb{N_{+}} .
Oblicz ilość wyrazów ujemnych tego ciągu.
Dane
a=1
b=-1
c=-42
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyraz drugi ciągu arytmetycznego jest o
36 większy
od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest
4 razy większy od wyrazu ósmego tego ciągu.
Podaj równicę r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Liczby
x-2 ,
x+m i
3x-4 są trzema początkowymi wyrazami ciągu
arytmetycznego
(b_n) .
Wyznacz b_{100} .
Dane
m=3
Odpowiedź:
b_{100}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz najmniejsze takie
n , że
S_n > 360 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Rozwiąż