Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+1) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_7 jest równy:
Odpowiedzi:
A. 512
B. 2048
C. 2304
D. 1024
Zadanie 2. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-12
i
4 , a pewien wyraz tego ciągu
a_k
jest równy
76 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{4} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 193/250 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wszystkie wyrazy nieskończonego ciągu geometrycznego
\left(a_n\right) , określonego dla każdej
liczby naturalnej
n\geqslant 1 , są dodatnie i
81a_5=4a_3 .
Wtedy iloraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{2}{9}
B. \frac{1}{3}
C. \frac{1}{6}
D. \frac{8}{27}
E. \frac{4}{27}
F. \frac{4}{9}
Zadanie 5. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{61}{5} , a jego iloraz wynosi
-3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=2000
p=12
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=6
a_{3}\cdot a_{5}=-16
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20521 ⋅ Poprawnie: 250/578 [43%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Liczby
3x-2 ,
\sqrt{ax} ,
3x+5 są kolejnymi dodatnimi wyrazami ciągu
geometrycznego.
Podaj liczbę x .
Dane
a=98
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż