Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-20n+48}{n^2+16}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 486/498 [97%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-27 oraz a_{10}=-67. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -\frac{13}{2} B. 1
C. 2 D. -13
E. -8 F. -4
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 241.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=8 i a_9=18.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{5}}{a_{3}}= \frac{1}{81}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 4096.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 6561.00 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{10}=102, oblicz a_{13}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=24
a_{3}\cdot a_{5}=135
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=7
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 138/211 [65%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójwyrazowy ciąg (x+2,3x+8,9x+34) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm