Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+2} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+9}{6k+4} B. \frac{8k+7}{6k+8}
C. \frac{8k+7}{6k+4} D. \frac{8k+9}{6k+8}
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 750/827 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=11.

7-ty wyraz tego ciągu a_{7} jest równy:

Odpowiedzi:
A. 36 B. 31
C. 21 D. 41
E. 26 F. 46
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 460/689 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=3\cdot(3^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : suma a_1+a_2 jest równa 27 T/N : drugi wyraz ciągu \left(a_n\right) jest równy 19
Zadanie 4.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 2 innych.

Ile nowych bakterii powstanie w ciągu 100 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg określony jest wzorem a_n=2^n.

Oblicz S_{7}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 7\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -85, a drugi wyraz tego ciągu jest równy -15.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 389/625 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -8, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -270.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 28/99 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma S_k dla ciągu arytmetycznego (b_n) gdzie n > 0, jest równa s.

Oblicz \frac{b_3+b_{k-2}}{2}.

Dane
k=29
s=464
Odpowiedź:
\frac{b_3+b_{k-2}}{2}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/103 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=10 a_3=-20.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot (-2)^{n-1} T/N : a_n=-5\cdot (-2)^{n}
T/N : a_n=5\cdot \frac{(-2)^n}{2} T/N : a_n=5\cdot (-2)^{n}
T/N : a_n=-5\cdot 2^{n}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm