Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 667/735 [90%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+2}{5}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -\frac{7}{5} B. -\frac{3}{5}
C. -1 D. -\frac{4}{5}
E. 1 F. -\frac{9}{5}
Zadanie 2.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 659/918 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{8}=-36 i a_{15}=-78.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 157.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=81 i a_3=9, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 15 B. 31
C. 129 D. 63
E. 127 F. 255
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{2}=102, oblicz a_{14}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 473/754 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2-25x+50,x^2-10x+25,-x^2+10x-5\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 567/952 [59%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 11070 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 50 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 567 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 28 większy od wyrazu czwartego tego ciągu.

Wyznacz a_3.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_4.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm