Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-210+52n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 254/241 [105%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=5n-7, b_n=5n^2, c_n=2^n, d_n=\frac{2}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg a_n jest arytmetyczny B. ciąg b_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny D. żaden z ciągów nie jest arytmetyczny
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 257.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczby \sqrt{5}-1, 4x+4 i \sqrt{5}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 6084.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 4200 B. 4000
C. 3500 D. 3700
E. 3900 F. 3600
Zadanie 6.  2 pkt ⋅ Numer: pp-20522 ⋅ Poprawnie: 114/203 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Nominalna stopa oprocentowania lokaty wynosi 3\% w stosunku rocznym (bez uwzględnienia podatku). Odsetki kapitalizowane są na koniec każdego kolejnego okresu czteromiesięcznego.

Oblicz, jaką kwotę wpłacono na tę lokatę, jeśli na koniec ośmiu miesięcy oszczędzania na rachunku lokaty było o 128.64 zł więcej niż przy jej otwarciu. Odpowiedź podaj bez jednostki.

Odpowiedź:
Kapital\ poczatkowy\ [zl]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=-1 oraz a_2+a_3=-20.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-19
a_{6}=1
a_{k}=196
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 597/985 [60%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 17685 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 35 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a-b,a^2-2,k-b) jest ciągiem atytmetycznym i geometrycznym. Wyznacz a i b.

Podaj a.

Dane
k=16
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm