Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 102/118 [86%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-3)^n\cdot n+3 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -90
B. -78
C. -71
D. -84
E. -68
F. -80
G. -77
H. -88
Zadanie 2. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 487/499 [97%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=21 oraz
a_{10}=41 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. 0
B. 1
C. 2
D. 5
E. \frac{11}{2}
F. 4
Zadanie 3. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-13)\cdot 6 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=4 i
a_9=16 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
14\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{14}{100}\right)
B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{14}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{14}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{14}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=4500
p=10
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W ciągu arytmetycznym
(a_n) , określonym
dla
n\geqslant 1 , dane są:
wyraz
a_1=5 oraz
a_2+a_3=19 .
Oblicz różnicę a_{18}-a_{15} .
Odpowiedź:
a_{18}-a_{15}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 397/637 [62%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci wyraz tego ciągu jest równy
8 , a suma piętnastu początkowych kolejnych wyrazów
tego ciągu jest równa
345 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego
\left(a_n\right) jest równa
S_{21} , a wyraz dziewiąty tego ciągu jest równy
a_9 .
Oblicz różnicę tego ciągu.
Dane
S_{21}=567=567.00000000000000
a_9=26=26.00000000000000
d=\frac{71}{2}=35.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
(2 pkt) Podaj numer wyrazu ciągu, który jest równy
d .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/109 [25%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
każdej liczby naturalnej
n\geqslant 1 .
W tym ciągu
a_1=-5 ,
a_2=-10
a_3=-20 .
Wzór ogólny ciągu (a_n) ma postać:
Odpowiedzi:
T/N : a_n=5\cdot \frac{2^n}{-2}
T/N : a_n=-5\cdot 2^{n}
T/N : a_n=5\cdot 2^{n}
T/N : a_n=-5\cdot 2^{n-1}
T/N : a_n=-5\cdot (-2)^{n}
Rozwiąż