Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 168/222 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 44 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 2. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1-7 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 412/630 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=3\cdot(3^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 6
T/N : różnica a_2-a_1 jest równa 12
Zadanie 4. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 61/68 [89%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójwyrazowy ciąg
(4,x,144) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 22
B. 26
C. 24
D. 23
E. 25
F. 20
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
14\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{14}{100}\right)
B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{14}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{14}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{14}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=3000
p=4
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{8}+a_{11}=-46 oraz
a_{2}+a_{13}=18 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=30
a_{3}\cdot a_{5}=209
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=14
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 130/199 [65%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójwyrazowy ciąg
(x+2,3x+8,9x+34) jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Rozwiąż