Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+1} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 183/205 [89%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
3 , a pierwszy wyraz tego ciągu jest równy
3 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{4}{3}
B. 1
C. 2
D. 3
E. 6
F. 4
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 491/918 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
141 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 477/710 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(4-\sqrt{7}, x, 4+\sqrt{7})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 525/866 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
4\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{1}{100}\right)^4
B. 1000\cdot\left(1+\frac{1}{100}\right)
C. 1000\cdot\left(1+\left(\frac{4}{100}\right)^4\right)
D. 1000\cdot\left(1+\frac{1}{400}\right)^4
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=2000
p=8
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 356/953 [37%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczby
2x+1 ,
12x ,
14x+107 są w podanej kolejności pierwszym,
drugim i czwartym wyrazem ciągu arytmetycznego.
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 129/253 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Trójwyrazowy ciąg
(x+2,y-1,y+3) jest arytmetyczny.
Suma wszystkich wyrazów tego ciągu jest równa
6 .
Oblicz wszystkie wyrazy tego ciągu.
Wyznacz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 28/99 [28%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Suma
S_k dla ciągu arytmetycznego
(b_n) gdzie
n > 0 ,
jest równa
s .
Oblicz \frac{b_3+b_{k-2}}{2} .
Dane
k=23
s=460
Odpowiedź:
\frac{b_3+b_{k-2}}{2}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a-b,a^2-2,k-b) jest ciągiem
atytmetycznym i geometrycznym. Wyznacz
a i
b .
Podaj a .
Dane
k=4
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż