Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 831/891 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+2), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 576 B. 2560
C. 2304 D. 1152
Zadanie 2.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 152/179 [84%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 8.

Wtedy:

Odpowiedzi:
A. a_{15}-a_{8}=88 B. a_{15}-a_{8}=56
C. a_{15}-a_{8}=32 D. a_{15}-a_{8}=24
E. a_{15}-a_{8}=72 F. a_{15}-a_{8}=80
G. a_{15}-a_{8}=48 H. a_{15}-a_{8}=64
Zadanie 3.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{7} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=64, a_2=32, a_3=16.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{7}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{9}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 7168.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 11481.75 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{6}=102, oblicz a_{17}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=8
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a-b,a^2-2,k-b) jest ciągiem atytmetycznym i geometrycznym. Wyznacz a i b.

Podaj a.

Dane
k=10
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm