Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=12+n-n^2 T/N : a_n=\sqrt{3}n+1
T/N : a_n=\frac{n-3}{4}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 736/812 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=7 oraz a_3=12.

7-ty wyraz tego ciągu a_{7} jest równy:

Odpowiedzi:
A. 47 B. 22
C. 37 D. 27
E. 32 F. 42
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 75/138 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 801 jest równa:
Odpowiedzi:
A. \frac{2+801}{2}\cdot 400 B. \frac{2+800}{2}\cdot 400
C. \frac{2+400}{2}\cdot 400 D. \frac{2+1602}{2}\cdot 801
E. \frac{2+1602}{2}\cdot 400 F. \frac{2+400}{2}\cdot 801
G. \frac{2+801}{2}\cdot 801 H. \frac{2+800}{2}\cdot 801
Zadanie 4.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 160 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 605/705 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 25\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 10625.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 6400 B. 6900
C. 6800 D. 6600
E. 6700 F. 6500
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 73/179 [40%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n-4 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. malejący B. niemonotoniczny
C. rosnący D. stały
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-3 B. a_{n+1}-a_n=-2
C. a_{n+1}-a_n=0 D. a_{n+1}-a_n=2
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 24, jest:
Odpowiedzi:
A. 18 B. 19
C. 15 D. 12
E. 20 F. 16
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 108 dla n równego:
Odpowiedzi:
A. 17 B. 13
C. 15 D. 16
E. 9 F. 12
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
194^2-(194-1)^2+(194-2)^2-(194-3)^2+(194-4)^2-(194-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=56
a_{3}\cdot a_{5}=759
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 163/285 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=9 i a_4=15.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 18 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 8 większy od wyrazu czwartego tego ciągu.

Wyznacz a_3.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_4.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm