Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 85/113 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=2n^2-2n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny
T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 2. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{10}+a_{11}+a_{12}=\frac{21}{2} .
Oblicz a_{11} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/131 [32%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{31}=0 .
Wówczas:
Odpowiedzi:
A. S_{62} > a_{62}
B. S_{62}=a_{62}
C. S_{62} \lessdot a_{62}
D. S_{62}=0
Zadanie 4. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 277/390 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x-3) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y+3) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x \lessdot 3 i y > -3
B. x \lessdot 3 i y\lessdot -3
C. x > 3 i y > -3
D. x > 3 i y\lessdot -3
Zadanie 5. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 594/689 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
10\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
6897.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 5800 zł
B. 6100 zł
C. 5300 zł
D. 6300 zł
E. 5700 zł
F. 5600 zł
Zadanie 6. 2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dany jest ciąg
a_n=an^2+bn+c , dla
n\in\mathbb{N_{+}} .
Oblicz ilość wyrazów ujemnych tego ciągu.
Dane
a=2
b=8
c=-90
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 480/1037 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
933 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 58/132 [43%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla wszystkich liczb
naturalnych
n\geqslant 1 . Suma dwudziestu początkowych wyrazów
tego ciągu jest równa
20\cdot a_{21}-1155 .
Oblicz różnicę ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczby
x-2 ,
x+m i
3x-4 są trzema początkowymi wyrazami ciągu
arytmetycznego
(b_n) .
Wyznacz b_{100} .
Dane
m=7
Odpowiedź:
b_{100}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz najmniejsze takie
n , że
S_n > 360 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są kwadraty
K_1 ,
K_2 ,
K_3 ,...,
K_{p} . Kwadrat
K_1 ma bok długości
a ,
zaś każdy kolejny kwadrat bok o połowę krótszy.
Oblicz pole powierzchni kwadratu K_{p} . Wynik zapisz
w postaci \frac{a^2}{2^m} .
Podaj m .
Dane
a=14
p=8
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Rozwiąż