Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-25n+25 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pomiędzy liczby 123 i 375 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{41}=0.

Wówczas:

Odpowiedzi:
A. S_{82}=0 B. S_{82} > a_{82}
C. S_{82} \lessdot a_{82} D. S_{82}=a_{82}
Zadanie 4.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=81, a_2=27, a_3=9.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{7}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{11}}{a_{9}}= \frac{1}{144}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=3
b=-6
c=-297
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
194^2-(194-1)^2+(194-2)^2-(194-3)^2+(194-4)^2-(194-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 148/208 [71%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=44
a_{3}\cdot a_{5}=475
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=19
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 66/111 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{11^n}{55} dla każdej liczby naturalnej n\geqslant 1. Wyraz numer 67 ciągu (a_n) jest równy:
Odpowiedzi:
A. \frac{11^{68}}{5} B. \frac{11^{64}}{5}
C. \frac{11^{69}}{5} D. \frac{11^{66}}{5}
E. \frac{11^{67}}{5} F. \frac{11^{65}}{5}
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) jest rosnący


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm