Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 831/891 [93%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+2) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_7 jest równy:
Odpowiedzi:
A. 576
B. 2560
C. 2304
D. 1152
Zadanie 2. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 152/179 [84%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
8 .
Wtedy:
Odpowiedzi:
A. a_{15}-a_{8}=88
B. a_{15}-a_{8}=56
C. a_{15}-a_{8}=32
D. a_{15}-a_{8}=24
E. a_{15}-a_{8}=72
F. a_{15}-a_{8}=80
G. a_{15}-a_{8}=48
H. a_{15}-a_{8}=64
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{7} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=64 ,
a_2=32 ,
a_3=16 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{7} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg określony jest wzorem
a_n=3^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Pan Kowalski złożył do banku kwotę
7168.00 zł na okres
dwóch lat na procent składany. Oprocentowanie w banku wynosi
p\% w skali roku, a odsetki kapitalizuje się
co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę
11481.75 zł (pomiń podatek od usług kapitałowych).
Wyznacz p .
Odpowiedź:
p\ [\%]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{6}=102 , oblicz
a_{17} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości
r opisano
trójkąt o bokach długości
a\leqslant b\leqslant c , które są kolejnymi
wyrazami ciągu arytmetycznego.
Oblicz stosunek wysokości opuszczonej na bok długości
b , do długości promienia okręgu
r .
Odpowiedź:
\frac{h}{r}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=8
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a-b,a^2-2,k-b) jest ciągiem
atytmetycznym i geometrycznym. Wyznacz
a i
b .
Podaj a .
Dane
k=10
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż