Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 820/879 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_4 jest równy:

Odpowiedzi:
A. 192 B. 80
C. 160 D. 40
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 753/830 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=5 oraz a_3=9.

10-ty wyraz tego ciągu a_{10} jest równy:

Odpowiedzi:
A. 49 B. 37
C. 41 D. 45
E. 33 F. 29
Zadanie 3.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=13 i a_8=-29.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 109/121 [90%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy -125.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. 5 B. -\frac{5}{2}
C. -5 D. -10
E. \frac{5}{2} F. 10
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 2000 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po k zł na p\% w skali roku (procent prosty).

Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od dochodów kapitałowych.

Dane
k=2400
p=5
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{2}=102, oblicz a_{6}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x-5,y-9,y-5) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest liczba k, k-ty wyraz ciągu arytmetycznego (a_n) oraz suma S_k, k początkowych wyrazów tego ciągu.

Oblicz a_1.

Dane
k=10
a_{10}=-76
S_{10}=-535
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Oblicz różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 213/358 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^{n+1}+6 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 50 B. 60
C. 49 D. 69
E. 65 F. 56
G. 79 H. 73
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) jest malejący


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm