Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+4} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+15}{6k+10} B. \frac{8k+17}{6k+14}
C. \frac{8k+15}{6k+14} D. \frac{8k+17}{6k+10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Ciąg (\sqrt{75}, b,\sqrt{147}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{23}=0.

Wówczas:

Odpowiedzi:
A. S_{46}=a_{46} B. S_{46} \lessdot a_{46}
C. S_{46}=0 D. S_{46} > a_{46}
Zadanie 4.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy \left(32,8,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 5700 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{25}{2}=-12.50000000000000
c=\frac{75}{2}=37.50000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -50, a drugi wyraz tego ciągu jest równy -6.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=14
a_{3}\cdot a_{5}=40
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy \left\langle p,q\right)?
Dane
p=240
q=420
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Ile jest równa suma tych liczb?
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są kwadraty K_1, K_2, K_3,..., K_{p}. Kwadrat K_1 ma bok długości a, zaś każdy kolejny kwadrat bok o połowę krótszy.

Oblicz pole powierzchni kwadratu K_{p}. Wynik zapisz w postaci \frac{a^2}{2^m}. Podaj m.

Dane
a=10
p=7
Odpowiedź:
m= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm