Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 753/902 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-7}{4} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 20 jest równa:
Odpowiedzi:
A. 89
B. 88
C. 86
D. 85
E. 84
F. 90
Zadanie 2. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trzy liczby
x-3 ,
x+3
i
3x-1 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{73} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 79/144 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od
751 jest równa:
Odpowiedzi:
A. \frac{2+1502}{2}\cdot 751
B. \frac{2+375}{2}\cdot 751
C. \frac{2+751}{2}\cdot 375
D. \frac{2+750}{2}\cdot 751
E. \frac{2+1502}{2}\cdot 375
F. \frac{2+750}{2}\cdot 375
G. \frac{2+751}{2}\cdot 751
H. \frac{2+375}{2}\cdot 375
Zadanie 4. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=9 i
a_9=4 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 321/513 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
12\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{12}{100}\right)
B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{12}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{12}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{12}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{6n^2-5n+1}{3n-1} .
Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od
17 ?
Podaj ilość takich wyrazów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W ciągu arytmetycznym
(a_n) , określonym
dla
n\geqslant 1 , dane są:
wyraz
a_1=2 oraz
a_2+a_3=10 .
Oblicz różnicę a_{18}-a_{15} .
Odpowiedź:
a_{18}-a_{15}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=-13
a_{6}=7
a_{k}=227
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=12
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20824 ⋅ Poprawnie: 91/143 [63%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Piłka odbijając się od ziemi za każdym razem osiąga wysokość
równą
p wysokości poprzedniej. Po szóstym odbiciu
od ziemi piłka wzniosła się na wysokość
d .
Na jaką wysokość wzniosła się piłka po pierwszym odbiciu?
Dane
p=\frac{3}{5}=0.600000000000000
d=243
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż