Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 686/750 [91%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+1}{4}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -2 B. -\frac{1}{2}
C. 1 D. -1
E. -\frac{3}{4} F. -\frac{3}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/747 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x-16, x-10 i 3x-40, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{75}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 497/867 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz sumę 10 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-5\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 521/661 [78%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+7) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 4.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -5 B. 2
C. 1 D. -6
E. 0 F. -2
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 816/929 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 10000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 1800.00 zł B. 1680.00 zł
C. 2625.00 zł D. 1750.00 zł
E. 2100.00 zł F. 2520.00 zł
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 76/184 [41%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n+1 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. stały B. niemonotoniczny
C. rosnący D. malejący
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-3 B. a_{n+1}-a_n=0
C. a_{n+1}-a_n=2 D. a_{n+1}-a_n=-2
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 45, jest:
Odpowiedzi:
A. 24 B. 21
C. 18 D. 28
E. 23 F. 27
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 288 dla n równego:
Odpowiedzi:
A. 16 B. 11
C. 20 D. 21
E. 17 F. 14
Zadanie 7.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 493/1052 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 881.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 398/639 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy 0, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa 225.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=2
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 227/378 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^{n+1}+6 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 74 B. 53
C. 55 D. 44
E. 60 F. 42
G. 73 H. 57
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) nie jest monotoniczny


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm