Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 751/900 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-1}{5} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 22 jest równa:
Odpowiedzi:
A. 112
B. 109
C. 108
D. 114
E. 113
F. 110
Zadanie 2. 1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 322/277 [116%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pięciowyrazowy ciąg
\left(-11,-\frac{13}{2},x,y,7\right)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
A. x=-\frac{3}{2} oraz y=\frac{7}{2}
B. x=-1 oraz y=3
C. x=-\frac{3}{2} oraz y=3
D. x=-1 oraz y=\frac{5}{2}
E. x=-2 oraz y=\frac{5}{2}
F. x=-2 oraz y=\frac{7}{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=12 i
a_8=-72 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=64 ,
a_2=32 ,
a_3=16 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{6} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg określony jest wzorem
a_n=2^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Pan Kowalski złożył do banku kwotę
4800.00 zł na okres
dwóch lat na procent składany. Oprocentowanie w banku wynosi
p\% w skali roku, a odsetki kapitalizuje się
co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę
8395.23 zł (pomiń podatek od usług kapitałowych).
Wyznacz p .
Odpowiedź:
p\ [\%]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
152^2-(152-1)^2+(152-2)^2-(152-3)^2+(152-4)^2-(152-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=6
a_{3}\cdot a_{5}=-16
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=3
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 77/175 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Liczby dodatnie
a_1 ,
a_2 i
a_3 tworzą ciąg geometryczny.
Podaj najmniejszą z tych liczb.
Dane
a_1+a_2+a_3=56
a_1\cdot a_2\cdot a_3=4096
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż