Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 20:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1353/1531 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pomiędzy liczby 81 i 285 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 490/720 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(2^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : suma a_1+a_2 jest równa 10 T/N : różnica a_2-a_1 jest równa 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{50}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 209/251 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 63 B. 33
C. 15 D. 3
E. 7 F. 31
Zadanie 6.  2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/277 [16%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Pan Kowalczyk ulokował w banku kwotę 3000 zł na okres dziesięciu lat na procent składany. Oprocentowanie w banku wynosi 6\% w skali roku, a odsetki kapitalizuje się co 12 miesięcy.

Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania podatku od usług kapitałowych).

Odpowiedź:
Kapital\ koncowy\ [zl]= (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -125, a drugi wyraz tego ciągu jest równy -19.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 153/211 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=4
a_{3}\cdot a_{5}=-5
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=5
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 141/216 [65%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójwyrazowy ciąg (x-4,3x-10,9x-20) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm