Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-157.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1339/1522 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pomiędzy liczby 96 i 396 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{8} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczby \sqrt{65}-1, 3x+4 i \sqrt{65}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{8}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{25}{2}=-12.50000000000000
c=\frac{75}{2}=37.50000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 120 oraz a_{30}=120.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 430/691 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2-x-2,x^2-2x+1,-x^2+2x+19\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy \left\langle p,q\right)?
Dane
p=240
q=500
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Ile jest równa suma tych liczb?
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 207/350 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+5 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 33 B. 46
C. 50 D. 43
E. 35 F. 70
G. 66 H. 31
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny T/N : ciąg (a_n) jest malejący


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm