Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-20n+48}{n^2+16} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 486/498 [97%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-27 oraz
a_{10}=-67 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -\frac{13}{2}
B. 1
C. 2
D. -13
E. -8
F. -4
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
241 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=8 i
a_9=18 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{5}}{a_{3}}=
\frac{1}{81} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Pan Kowalski złożył do banku kwotę
4096.00 zł na okres
dwóch lat na procent składany. Oprocentowanie w banku wynosi
p\% w skali roku, a odsetki kapitalizuje się
co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę
6561.00 zł (pomiń podatek od usług kapitałowych).
Wyznacz p .
Odpowiedź:
p\ [\%]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{10}=102 , oblicz
a_{13} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=24
a_{3}\cdot a_{5}=135
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczby
x-2 ,
x+m i
3x-4 są trzema początkowymi wyrazami ciągu
arytmetycznego
(b_n) .
Wyznacz b_{100} .
Dane
m=7
Odpowiedź:
b_{100}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz najmniejsze takie
n , że
S_n > 360 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 138/211 [65%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójwyrazowy ciąg
(x+2,3x+8,9x+34) jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Rozwiąż