Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=12+n-n^2
T/N : a_n=\sqrt{3}n+1
T/N : a_n=\frac{n-3}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 736/812 [90%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=7
oraz
a_3=12 .
7-ty wyraz tego ciągu a_{7} jest równy:
Odpowiedzi:
A. 47
B. 22
C. 37
D. 27
E. 32
F. 42
Zadanie 3. 1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 75/138 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od
801 jest równa:
Odpowiedzi:
A. \frac{2+801}{2}\cdot 400
B. \frac{2+800}{2}\cdot 400
C. \frac{2+400}{2}\cdot 400
D. \frac{2+1602}{2}\cdot 801
E. \frac{2+1602}{2}\cdot 400
F. \frac{2+400}{2}\cdot 801
G. \frac{2+801}{2}\cdot 801
H. \frac{2+800}{2}\cdot 801
Zadanie 4. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 160 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 605/705 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
25\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
10625.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 6400 zł
B. 6900 zł
C. 6800 zł
D. 6600 zł
E. 6700 zł
F. 6500 zł
Zadanie 6. 3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 73/179 [40%]
Rozwiąż
Podpunkt 6.1 (0.5 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=2n-4
dla każdej liczby naturalnej
n \geqslant 1 .
Ciąg (a_n) jest:
Odpowiedzi:
A. malejący
B. niemonotoniczny
C. rosnący
D. stały
Podpunkt 6.2 (0.5 pkt)
Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-3
B. a_{n+1}-a_n=-2
C. a_{n+1}-a_n=0
D. a_{n+1}-a_n=2
Podpunkt 6.3 (1 pkt)
Najmniejszą wartością
n , dla której wyraz
a_n jest
większy od
24 , jest:
Odpowiedzi:
A. 18
B. 19
C. 15
D. 12
E. 20
F. 16
Podpunkt 6.4 (1 pkt)
Suma
n początkowych wyrazów ciągu
(a_n)
jest równa
108 dla
n równego:
Odpowiedzi:
A. 17
B. 13
C. 15
D. 16
E. 9
F. 12
Zadanie 7. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
194^2-(194-1)^2+(194-2)^2-(194-3)^2+(194-4)^2-(194-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=56
a_{3}\cdot a_{5}=759
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 163/285 [57%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby
naturalnej
n\geqslant 1 ,
a_1=9 i
a_4=15 .
Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
Odpowiedź:
S_{100}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
Pierwszy wyraz malejącego ciągu geometrycznego
\left(a_n\right)
jest o
18
większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o
8 większy od wyrazu czwartego tego ciągu.
Wyznacz a_3 .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Rozwiąż