Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 674/742 [90%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+10}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{11}{2}
B. \frac{13}{2}
C. -\frac{15}{2}
D. -\frac{13}{2}
E. -6
F. -\frac{17}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3}
T/N : a_n=\frac{-4n+16}{-2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
a_{7}=-55 oraz
a_{11}=-95 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest geometryczny, w krórym dane są
dwa wyrazy
b_1=648 i
b_5=8 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 201/245 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 85
B. 343
C. 21
D. 5
E. 341
F. 1365
Zadanie 6. 2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Pan Kowalczyk ulokował w banku kwotę
7000 zł na okres
dziesięciu lat na procent składany. Oprocentowanie w banku wynosi
9\% w skali roku, a odsetki kapitalizuje się
co
12 miesięcy.
Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania
podatku od usług kapitałowych).
Odpowiedź:
Kapital\ koncowy\ [zl]=
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek
od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{9}+a_{12}=2 oraz
a_{4}+a_{15}=26 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{1}+a_{2}=43
a_{7}=38
a_{k}+a_{k+1}=175
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=16
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20520 ⋅ Poprawnie: 45/163 [27%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Ciąg geometryczny o wyrazach dodatnich
(a_n)
określony jest wzorem
a_n=q^{n-1} i zawiera trzy
kolejne wyrazy
(x,y,2x) .
Oblicz a_k .
Dane
k=17
Odpowiedź:
a_{k}=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż