Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 446/650 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-1) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
T/N : ciąg (a_n) jest monotoniczny
Zadanie 2. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 784/858 [91%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=5
oraz
a_3=9 .
10-ty wyraz tego ciągu a_{10} jest równy:
Odpowiedzi:
A. 29
B. 37
C. 33
D. 41
E. 49
F. 45
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
299 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/817 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
o numerze
k=13 jest równy
6 .
Oblicz a_{11}\cdot a_{15} .
Odpowiedź:
a_{k-2}\cdot a_{k+2}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
2800 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=2200
p=10
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 493/1052 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
999 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 484/771 [62%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Ciąg
\left(3x^2+41x+138,x^2+12x+36,-x^2-12x-16\right) jest arytmetyczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
8 dają resztę
5
jest równa
42500 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 227/378 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=2\cdot(-1)^{n+1}+6 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 76
B. 71
C. 58
D. 70
E. 60
F. 50
G. 40
H. 73
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny
T/N : ciąg (a_n) jest malejący
Rozwiąż