Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-81 jest mniejszych od
1600 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 400/461 [86%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=-5 oraz
a_3=-9 .
Wyraz a_{9} jest równy:
Odpowiedzi:
A. -23
B. -15
C. -9
D. -19
E. -21
F. -7
G. -25
H. -13
I. -11
J. -17
Zadanie 3. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
a_{3}=-13 oraz
a_{7}=-33 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 767/847 [90%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg liczbowy
(27, 9, a-6) jest ciągiem geometrycznym.
Liczba a jest równa:
Odpowiedzi:
A. 13
B. 8
C. 11
D. 5
E. 9
F. 10
Zadanie 5. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{61}{5} , a jego iloraz wynosi
-3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pan Kozłowski złożył do banku kwotę
k zł, na procent prosty,
w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego
roku (oprócz końca roku ostatniego) wpłacał kwotę
d zł.
Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło
p\% w stosunku rocznym.
Oblicz wartość tej lokaty po n latach
(przed opodatkowaniem, po n -tym roku pan Kozłowski
nie dopłacił kwoty d zł, tylko wybrał z banku
pieniądze na lokacie).
Dane
k=7000
d=1000
p=3.0
n=7
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
164^2-(164-1)^2+(164-2)^2-(164-3)^2+(164-4)^2-(164-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=4
a_{3}\cdot a_{5}=-5
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=11
a_{11}=-45
S_{11}=-330
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 210/354 [59%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=2\cdot(-1)^{n+1}+3 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 19
B. 20
C. 48
D. 40
E. 30
F. 45
G. 29
H. 46
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny
T/N : ciąg (a_n) jest malejący
Rozwiąż