Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+5} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+21}{6k+13}
B. \frac{8k+19}{6k+13}
C. \frac{8k+19}{6k+17}
D. \frac{8k+21}{6k+17}
Zadanie 2. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 212/205 [103%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=4n+4 ,
b_n=2n^2+5 ,
c_n=2^n ,
d_n=\frac{3}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg b_n jest arytmetyczny
B. ciąg a_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny
D. żaden z ciągów nie jest arytmetyczny
Zadanie 3. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=18 i
a_8=-38 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 277/390 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x-1) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y+3) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x > 1 i y\lessdot -3
B. x \lessdot 1 i y > -3
C. x > 1 i y > -3
D. x \lessdot 1 i y\lessdot -3
Zadanie 5. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
3700 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
11\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Suma trzydziestu początkowych wyrazów ciągu arytmetycznego
(a_n) jest równa
150 oraz
a_{30}=150 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=30
a_{3}\cdot a_{5}=209
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczby
x-2 ,
x+m i
3x-4 są trzema początkowymi wyrazami ciągu
arytmetycznego
(b_n) .
Wyznacz b_{100} .
Dane
m=7
Odpowiedź:
b_{100}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz najmniejsze takie
n , że
S_n > 360 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są kwadraty
K_1 ,
K_2 ,
K_3 ,...,
K_{p} . Kwadrat
K_1 ma bok długości
a ,
zaś każdy kolejny kwadrat bok o połowę krótszy.
Oblicz pole powierzchni kwadratu K_{p} . Wynik zapisz
w postaci \frac{a^2}{2^m} .
Podaj m .
Dane
a=13
p=9
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Rozwiąż