Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 445/649 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-6) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
T/N : różnica a_{5}-a_4 jest równa 3
Zadanie 2. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomiędzy liczby
121 i
319
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
277 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 85/88 [96%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójwyrazowy ciąg
(2,x,72) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 11
B. 9
C. 16
D. 15
E. 8
F. 12
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 321/513 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
18\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{18}{100}\right)
B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{18}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{18}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}+\frac{18}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{6n^2-5n+1}{3n-1} .
Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od
17 ?
Podaj ilość takich wyrazów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{13}=102 , oblicz
a_{16} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=44
a_{3}\cdot a_{5}=475
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rowerzysta w ciągu pierwszej godziny przejechał
s
kilometrów, a ciągu każdej następnej godziny przejeżdżał o
d metrów mniej. W ciągu ostatniej godziny jazdy
ten rowerzysta przejechał drogę o długości
p
kilometrów.
Ile godzin trwała jazda tego rowerzysty?
Dane
s=38
d=210
p=33.80
Odpowiedź:
t\ [h]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/425 [12%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trzeci, piąty i siódmy wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_3 ,
a_5 i
a_7 .
Oblicz najmniejszy możliwy iloraz tego ciągu.
Dane
a_7-a_3=180
a_7-a_5=144
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Rozwiąż