Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-81 jest mniejszych od 1600?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 400/461 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-5 oraz a_3=-9.

Wyraz a_{9} jest równy:

Odpowiedzi:
A. -23 B. -15
C. -9 D. -19
E. -21 F. -7
G. -25 H. -13
I. -11 J. -17
Zadanie 3.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym a_{3}=-13 oraz a_{7}=-33.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 767/847 [90%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy (27, 9, a-6) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. 13 B. 8
C. 11 D. 5
E. 9 F. 10
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{61}{5}, a jego iloraz wynosi -3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=7000
d=1000
p=3.0
n=7
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
164^2-(164-1)^2+(164-2)^2-(164-3)^2+(164-4)^2-(164-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=4
a_{3}\cdot a_{5}=-5
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest liczba k, k-ty wyraz ciągu arytmetycznego (a_n) oraz suma S_k, k początkowych wyrazów tego ciągu.

Oblicz a_1.

Dane
k=11
a_{11}=-45
S_{11}=-330
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Oblicz różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 210/354 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^{n+1}+3 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 19 B. 20
C. 48 D. 40
E. 30 F. 45
G. 29 H. 46
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) jest malejący


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm