Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 753/902 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-7}{4}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 20 jest równa:

Odpowiedzi:
A. 89 B. 88
C. 86 D. 85
E. 84 F. 90
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x-3, x+3 i 3x-1, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{73}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 79/144 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 751 jest równa:
Odpowiedzi:
A. \frac{2+1502}{2}\cdot 751 B. \frac{2+375}{2}\cdot 751
C. \frac{2+751}{2}\cdot 375 D. \frac{2+750}{2}\cdot 751
E. \frac{2+1502}{2}\cdot 375 F. \frac{2+750}{2}\cdot 375
G. \frac{2+751}{2}\cdot 751 H. \frac{2+375}{2}\cdot 375
Zadanie 4.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=9 i a_9=4.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 321/513 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 12\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{12}{100}\right) B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{12}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{12}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{12}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=2 oraz a_2+a_3=10.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-13
a_{6}=7
a_{k}=227
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=12
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20824 ⋅ Poprawnie: 91/143 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Piłka odbijając się od ziemi za każdym razem osiąga wysokość równą p wysokości poprzedniej. Po szóstym odbiciu od ziemi piłka wzniosła się na wysokość d.

Na jaką wysokość wzniosła się piłka po pierwszym odbiciu?

Dane
p=\frac{3}{5}=0.600000000000000
d=243
Odpowiedź:
h=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm