Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 197/207 [95%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+6}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{1}{2}
B. \frac{11}{50}
C. \frac{13}{98}
D. \frac{1}{6}
E. \frac{11}{75}
F. \frac{5}{16}
Zadanie 2. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 193/213 [90%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=152 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 76
B. 60
C. 62
D. 89
E. 88
F. 71
G. 66
H. 81
Zadanie 3. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=21 i
a_8=-28 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 471/728 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dany jest ciąg geometryczny
\left(a_n\right) określony dla każdej liczby
naturalnej
n\geqslant 1 . Pierwszy wyraz tego ciągu jest równy
16 , natomiast iloraz tego ciągu jest równy
-\frac{1}{4} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : różnica a_3-a_2 jest równa 5
T/N : wyraz a_{2062} jest ujemny
Zadanie 5. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
28\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{7}{100}\right)^4
B. 1000\cdot\left(1+\frac{7}{400}\right)^4
C. 1000\cdot\left(1+\frac{7}{100}\right)
D. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right)
Zadanie 6. 2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Ciąg liczbowy
(a_n) określony jest wzorem
a_n=n^2+bn+c .
Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.
Dane
b=-\frac{29}{2}=-14.50000000000000
c=51=51.00000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 493/1052 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
803 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 477/758 [62%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Ciąg
\left(3x^2+41x+138,x^2+12x+36,-x^2-12x-16\right) jest arytmetyczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rowerzysta w ciągu pierwszej godziny przejechał
s
kilometrów, a ciągu każdej następnej godziny przejeżdżał o
d metrów mniej. W ciągu ostatniej godziny jazdy
ten rowerzysta przejechał drogę o długości
p
kilometrów.
Ile godzin trwała jazda tego rowerzysty?
Dane
s=39
d=230
p=34.40
Odpowiedź:
t\ [h]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 213/359 [59%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=3\cdot(-1)^{n+1}+7 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 83
B. 50
C. 56
D. 70
E. 84
F. 88
G. 74
H. 62
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny
T/N : ciąg (a_n) jest malejący
Rozwiąż