Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 108/119 [90%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-2)^n\cdot n-4 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -11 B. -39
C. -38 D. -28
E. -31 F. -22
G. -23 H. -14
Zadanie 2.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 721/946 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Ciąg (\sqrt{48}, b,\sqrt{108}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 57/121 [47%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (c_n) dany jest wzorem c_n=(n-15)\cdot 4 dla n\geqslant 1.

Oblicz S_{20}.

Odpowiedź:
S_{20}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. (\sqrt{11})^n B. \frac{\left(\sqrt{11}\right)^n}{11}
C. \frac{11^n}{\sqrt{11}} D. \left(\frac{\sqrt{11}}{11}\right)^n
Zadanie 5.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 244/370 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{7}}{a_{5}}= \frac{1}{36}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
Dany jest ciąg a_n=|n-3|+|n-11|. Wyznacz te wyrazy ciągu, które sa większe od 8.

Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 13/92 [14%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
162^2-(162-1)^2+(162-2)^2-(162-3)^2+(162-4)^2-(162-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 398/639 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -11, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -465.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 244/576 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=420=420.00000000000000
a_9=19=19.00000000000000
d=27=27.00000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 227/378 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+2 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 4 B. 10
C. 27 D. 34
E. 17 F. 8
G. 20 H. 9
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) nie jest monotoniczny


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm