Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 76/80 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 142 jest 8-tym wyrazem ciągu:

Odpowiedzi:
A. (a_n) B. (d_n)
C. (b_n) D. (c_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 456/510 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=8 oraz a_3=2.

Wyraz a_{13} jest równy:

Odpowiedzi:
A. -34 B. -10
C. -43 D. -22
E. -37 F. -28
G. -13 H. -25
I. -19 J. -16
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{39}=0.

Wówczas:

Odpowiedzi:
A. S_{78} \lessdot a_{78} B. S_{78}=0
C. S_{78}=a_{78} D. S_{78} > a_{78}
Zadanie 4.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 826/904 [91%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+7) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -3 B. -2
C. -4 D. -5
E. -8 F. 0
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 645/752 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 7865.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 6500 B. 6400
C. 6600 D. 7100
E. 6900 F. 6200
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 6/62 [9%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=3000
d=1000
p=8.5
n=4
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Dany jest ciąg arytmetyczny (14, x-3, y, -1).

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/314 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=47
a_{7}=40
a_{k}+a_{k+1}=155
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 29/100 [29%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma S_k dla ciągu arytmetycznego (b_n) gdzie n > 0, jest równa s.

Oblicz \frac{b_3+b_{k-2}}{2}.

Dane
k=55
s=715
Odpowiedź:
\frac{b_3+b_{k-2}}{2}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 147/924 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 245 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 20 większy od wyrazu czwartego tego ciągu.

Wyznacz a_2.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_3.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm