Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=3n^2-5n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : wyraz a_{6} jest równy 78:
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 482/732 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x+1, x+7 i 3x+11, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{69}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz sumę 24 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-4\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 468/724 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 16, natomiast iloraz tego ciągu jest równy -\frac{1}{4}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : suma a_2+a_3 jest równa 13 T/N : ciąg (a_n) jest malejący
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 608/710 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 3872.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 2800 B. 2900
C. 3800 D. 3200
E. 3000 F. 3500
Zadanie 6.  2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
Dany jest ciąg a_n=|n-3|+|n-11|. Wyznacz te wyrazy ciągu, które sa większe od 8.

Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{11}=102, oblicz a_{18}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 473/754 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2+23x+42,x^2+6x+9,-x^2-6x+11\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=37
d=240
p=33.64
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=8
p=4
q=5
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm