Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-21n+21 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{9}+a_{10}+a_{11}=\frac{15}{2}.

Oblicz a_{10}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym a_{3}=-10 oraz a_{7}=-34.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \frac{\left(\sqrt{7}\right)^n}{7} B. (\sqrt{7})^n
C. \left(\frac{\sqrt{7}}{7}\right)^n D. \frac{7^n}{\sqrt{7}}
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/245 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 4 B. 13
C. 364 D. 40
E. 123 F. 121
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 76/184 [41%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=-3n-6 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. rosnący B. stały
C. malejący D. niemonotoniczny
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=2 B. a_{n+1}-a_n=-3
C. a_{n+1}-a_n=4 D. a_{n+1}-a_n=-2
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest mniejszy od -63, jest:
Odpowiedzi:
A. 23 B. 21
C. 25 D. 15
E. 20 F. 16
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa -399 dla n równego:
Odpowiedzi:
A. 19 B. 9
C. 15 D. 17
E. 14 F. 10
Zadanie 7.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 493/1052 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 891.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-18
a_{6}=-6
a_{k}=111
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 7 dają resztę 5 jest równa 37250.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 218/367 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^{n+1}+5 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 42 B. 60
C. 59 D. 41
E. 50 F. 48
G. 46 H. 61
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) jest malejący


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm