Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{3n^2+15n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 42
B. 48
C. 30
D. 39
E. 27
F. 36
Zadanie 2. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 21,28,35
B. 23,30,37
C. 25,32,39
D. 20,27,34
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
183 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 610/732 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trzywyrazowy ciąg
(7-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedzi:
A. \frac{1}{2}
B. 3
C. 1
D. 4
E. 8
F. 2
Zadanie 5. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
7098.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 4200 zł
B. 4800 zł
C. 4400 zł
D. 3800 zł
E. 4500 zł
F. 4700 zł
Zadanie 6. 2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Ciąg liczbowy
(a_n) określony jest wzorem
a_n=n^2+bn+c .
Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.
Dane
b=-\frac{21}{2}=-10.50000000000000
c=26=26.00000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{5}=102 , oblicz
a_{16} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=16
a_{3}\cdot a_{5}=39
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=15
a_{15}=51
S_{15}=240
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 138/211 [65%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójwyrazowy ciąg
(x-3,3x-7,9x-11) jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Rozwiąż