Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+2} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+9}{6k+4}
B. \frac{8k+7}{6k+4}
C. \frac{8k+7}{6k+8}
D. \frac{8k+9}{6k+8}
Zadanie 2. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2}
T/N : a_n=\sqrt{n+3}
Zadanie 3. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-16)\cdot 7 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-4 , a
a_3=-81 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
5\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{5}{100}\right)
B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{5}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{5}{100}\right)
D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{5}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
6\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 481/1038 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
967 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
6 , a iloczyn tych wyrazów jest równy
-154 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{70} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
10 dają resztę
1
jest równa
51600 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 131/200 [65%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójwyrazowy ciąg
(x-5,3x-13,9x-29) jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Rozwiąż