Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-23n+23 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 742/818 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=10.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedzi:
A. 14 B. 18
C. 22 D. 34
E. 26 F. 30
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 851 jest równa:
Odpowiedzi:
A. \frac{2+851}{2}\cdot 851 B. \frac{2+425}{2}\cdot 425
C. \frac{2+851}{2}\cdot 425 D. \frac{2+850}{2}\cdot 851
E. \frac{2+1702}{2}\cdot 425 F. \frac{2+1702}{2}\cdot 851
G. \frac{2+850}{2}\cdot 425 H. \frac{2+425}{2}\cdot 851
Zadanie 4.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 94/111 [84%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrzowy ciąg \left(30,3x,\frac{10}{3}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{20}{9} B. \frac{10}{3}
C. 5 D. \frac{5}{3}
E. \frac{10}{9} F. \frac{5}{6}
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 799/912 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 42000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 11\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 7798.56 zł B. 8123.50 zł
C. 8355.60 zł D. 9748.20 zł
E. 12185.25 zł F. 11697.84 zł
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 361/960 [37%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczby 2x+1, 12x, 14x+35 są w podanej kolejności pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 135/264 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x+4,y,y+4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=9
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=9
p=6
q=7
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm