Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=2
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{6}=0.16666666666667
b=4
Odpowiedzi:
A. niemonotoniczny B. malejący
C. niemalejący D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-5}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{2}{\sqrt{49n^2+1}-7} jest:
Odpowiedzi:
A. -\infty B. +\infty
C. 7 D. 2
Zadanie 5.  1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=5\cdot 4^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go poprzedzających. Wyznacz wzór tego ciągu.

Podaj a_{55}.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj a_{111}.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=7
b=9
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=5
q=3
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+3}-\frac{n^2}{n+4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20487 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi \frac{25}{3}, zaś suma wszystkich wyrazów o numerach parzystych tego ciągu wynosi \frac{50}{21}.

Oblicz a_4.

Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Ciąg (a,b,c) jest ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj najmniejsze możliwe a.

Dane
s=28.0
t=512
Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a,b,c+64+k) jest ciągiem geometrycznym, natomiast ciąg (a,b,c+k) jest ciągiem arytmetycznym. Ponadto ciąg (a,b-8,c+k) jest geometryczny.

Podaj najmniejsze możliwe c.

Dane
k=-32
Odpowiedź:
c_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm