Dany jest nieskończony ciąg geometryczny (a_n)
określony wzorem
a_n=\frac{8}{\left(\sqrt{3}\right)^n}
, dla n=1,2,3,....
Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e},
gdzie c,d,e\in\mathbb{Z}.
Podaj liczby c,d i e.
Odpowiedzi:
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%]
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego
dla n\geqslant 1, jest równa 5, a suma kwadratów
wszystkich wyrazów tego ciągu jest równa 10.
Oblicz iloraz ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%]
Ciąg (a_n), określony dla każdej liczby naturalnej
n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie.
Ponadto a_1=1800 i
a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n),
określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny.
Suma wszystkich wyrazów ciągu (a_n) jest równa sumie
k=15 początkowych kolejnych wyrazów ciągu (b_n).
Ponadto a_3=b_4.
Oblicz iloraz q ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
Wyznacz b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat