Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 4/4 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=4
Odpowiedzi:
A. rosnący
B. niemalejący
C. malejący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-8}{n+3} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{3n^2-n+4}{-3-n+2n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{3}{4}
B. -\frac{1}{2}
C. \frac{3}{2}
D. 1
E. -1
F. \frac{9}{4}
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
3 , a suma
wszystkich jego wyrazów jest równa
13 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=60
l=80
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dany jest ciąg geometryczny
(a_n) o ilorazie
q .
Oblicz najmniejszą możliwą wartość liczby q^2 .
Dane
a_1+a_2+a_3+a_4+a_5=248
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Dla wyznaczonej najmniejszej wartości liczby
q^2 ,
oblicz pierwszy wyraz tego ciągu o ilorazie
|q| .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Ciąg
(a+p,b+q,10) jest arytmetyczny, zaś ciąg
(10,b+q+5,2(a+p)) jest geometryczny.
Oblicz a\cdot b .
Dane
p=9
q=4
Odpowiedź:
a\cdot b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}\frac{10n^2-5n+2}{(5n+7)(-10n+4)}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 10/15 [66%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
1+\frac{1}{1-\frac{1}{6}x}+\frac{1}{\left(1-\frac{1}{6}x\right)^2}+...=1-\frac{1}{3}x
.
Podaj rozwiązanie tego równania.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Ciąg
(a,b,c) jest rosnącym ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj a .
Dane
s=42.0
t=1728
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 5 pkt ⋅ Numer: pr-30886 ⋅ Poprawnie: 21/33 [63%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(a,b,c-4) jest trzywyrazowym ciągiem geometrycznym o wyrazach
dodatnich. Ciąg
(2a,2b,c-3) jest trzywyrazowym ciągiem arytmetycznym.
Ponadto spełniony jest warunek
c-b=10 .
Podaj liczby a i b .
Odpowiedzi:
Podpunkt 12.2 (3 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż