Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n . O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}} .
Oblicz wyraz a_k tego ciągu.
Dane
k=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=12
Odpowiedzi:
A. rosnący
B. niemonotoniczny
C. nierosnący
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{110} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-6n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{9}{10} , a suma
wszystkich jego wyrazów jest równa
\frac{45}{8} .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwszy wyraz ciągu
(a_n) , określonego dla
n\geqslant 1 ,
jest równy
1 . Wszystkie wyrazy tego ciągu spełniają warunek
a_n=4a_{n+1}+2n^2+2 .
Oblicz a_3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-112
a_4+a_7=224
S_k=43692
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a,b+m,1) jest arytmetyczny, zaś ciąg
(1,a,b+m) jest geometryczny.
Podaj najmniejsze możliwe b .
Dane
m=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
b_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{100n^2+4n}-\sqrt{100n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Ciąg
(c_n) określony jest rekurencyjnie:
\begin{cases}
c_1=\frac{1}{2} \\
c_{n}=\frac{27\cdot c_{n-1}}{1+2+3+...+53}\text{, dla }n > 1
\end{cases}
oraz
S_n=c_1+c_2+c_3+...+c_n .
Oblicz \lim_{n\to\infty}S_n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Ciąg
(a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100 .
Wyznacz
a_1 .
Z ilu cyfr składa się liczba a_1 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Funkcja
f określona jest wzorem:
f(x)=\frac{3(x-2)}{x-4}+\frac{3(x-2)^2}{(x-4)^2}+\frac{3(x-2)^3}{(x-4)^3}+...
.
Przedział liczbowy (-\infty, p) jest dziedziną tej
funkcji. Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Przedział liczbowy
(p, +\infty) jest zbiorem wartości
tej funkcji. Podaj
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
Przedział liczbowy
\langle p, q) jest rozwiązaniem
nierówności
f(x)\leqslant 0 .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 12.4 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż