W chwili początkowej (t=0) masa substancji jest równa
4 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 19\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Ciąg (a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 wzorem a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p}
gdzie p jest liczbą rzeczywistą dodatnią.
Oblicz wartość p, dla której granica ciągu (a_n)
jest równa \frac{5}{6}.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 9/14 [64%]
Boki AB, BC,
CD i DA czworokąta
wpisanego w okrąg mają długości odpowiednio 2a,
2a, a\sqrt{5} i
a\sqrt{3}, zaś kąty przy wierzchołkach
A, B i
C tworzą ciąg arytmetyczny.
Oblicz pole powierzchni tego czworokąta.
Dane
a=4
Odpowiedź:
P=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 0/2 [0%]