Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10305  
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=4
b=-6
c=-6
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10265  
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{9}=0.11111111111111
b=3
Odpowiedzi:
A. malejący B. rosnący
C. niemonotoniczny D. nierosnący
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10306  
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{150} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-11627  
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{-4}{\sqrt{49n^2+1}-7} jest:
Odpowiedzi:
A. -\infty B. +\infty
C. 7 D. -4
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10143  
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=7\cdot 3^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20277  
Podpunkt 6.1 (1 pkt)
 » Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go poprzedzających. Wyznacz wzór tego ciągu.

Podaj a_{75}.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj a_{151}.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20273  
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=129
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20813  
Podpunkt 8.1 (1 pkt)
 Ciąg liczbowy (x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x,y-5+m,z) jest geometryczny.

Podaj największe możliwe x.

Dane
m=5
x+y+z=28
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21175  
Podpunkt 9.1 (2 pkt)
 Ciąg (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1 wzorem a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p} gdzie p jest liczbą rzeczywistą dodatnią.

Oblicz wartość p, dla której granica ciągu (a_n) jest równa \frac{2}{3}.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20837  
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30192  
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym \left(a_n\right) zachodzi wzór S_n=-\frac{7}{4}n+\frac{1}{4}n^2, dla każdej liczby naturalnej dodatniej.

Oblicz sumę k początkowych wyrazów tego ciągu o numerach nieparzystych.

Dane
k=92
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30185  
Podpunkt 12.1 (2 pkt)
 Ciąg (x+k-5,y,z) jest ciągiem arytmetycznym. Ciąg (x+k,y+3,z+4) jest ciągiem geometrycznym rosnącym spełniającym warunek z+4=4\cdot (x+k). Wyznacz liczby x,y,z.

Podaj x.

Dane
k=4
Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)


Masz pytania? Napisz: k42195@poczta.fm