Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=4
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=9
Odpowiedzi:
A. nierosnący B. malejący
C. niemalejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{180} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(8n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{8}{\left(\sqrt{8}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Ciąg \left( \sqrt[3]{12}+\sqrt[3]{6}, \frac{\sqrt{2}(m+3)}{4}, \sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36} \right) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=134
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=186. Ciąg (a_1+2,a_2-21,a_3-140) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty} \left(\frac{15n^3+6n+5}{6n^3+1}-\frac{13n^2+2n+1}{5n^2-4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20836 ⋅ Poprawnie: 15/23 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 1-\frac{2x-6}{2}+\frac{(2x-6)^2}{4}-...\geqslant 2 .

Rozwiązanie zapisz w postaci przedziału liczbowego. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=126.0
t=13824
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 7/11 [63%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dany jest nieskończony szereg geometryczny 2(3x+7)-\frac{6(3x+7)}{3x+6}+\frac{18(3x+7)}{(3x+6)^2}-\frac{54(3x+7)}{(3x+6)^3}+....

Wyznacz wszystkie wartości zmiennej x (różnej od -\frac{7}{3} i od -2), dla których suma tego szeregu istnieje.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości zmiennej x, dla których suma tego szeregu istnieje i jest równa \frac{15}{2}.

Podaj największe takie x.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm