Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=-6
b=6
c=8
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 5/5 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=10
Odpowiedzi:
A. rosnący
B. nierosnący
C. niemonotoniczny
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/7 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-6}{n+9} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{3n^2-4n+3}{-5+4n-4n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{1}{4}
B. -\frac{3}{4}
C. -\frac{1}{2}
D. -1
E. -\frac{9}{8}
F. -\frac{3}{8}
Zadanie 5. 1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz sumę szeregu
162-54+18-... .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/9 [66%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Pierwszy wyraz ciągu
(a_n) wynosi
0 . Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{65} .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 47/37 [127%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez
a lub przez
b .
Dane
a=7
b=20
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 11/10 [110%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg liczbowy
(x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg
liczbowy
(x,y-5+m,z) jest geometryczny.
Podaj największe możliwe x .
Dane
m=4
x+y+z=29
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
y_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/16 [75%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}
\left(\frac{12n^3+6n+5}{6n^3+1}-\frac{15n^2+2n+1}{5n^2-4}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Ciąg
(c_n) określony jest rekurencyjnie:
\begin{cases}
c_1=\frac{1}{2} \\
c_{n}=\frac{29\cdot c_{n-1}}{1+2+3+...+57}\text{, dla }n > 1
\end{cases}
oraz
S_n=c_1+c_2+c_3+...+c_n .
Oblicz \lim_{n\to\infty}S_n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Ciąg
(a,b,c) jest ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj najmniejsze możliwe a .
Dane
s=94.5
t=5832
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=s . Ciąg
(a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Dane
s=273
b=10
c=-172
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj iloraz ciągu
(a_n) .
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż