Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=2
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=5
Odpowiedzi:
A. rosnący B. malejący
C. niemonotoniczny D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-5}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-2n^2+n-3}{4-5n+n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -1 B. 4
C. -3 D. \frac{2}{3}
E. \frac{4}{3} F. -2
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 135-45+15-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=\frac{n+1}{p\cdot(n+1)+q}.

Oblicz a_2.

Dane
p=4
q=-4
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Ogólny wyraz tego ciągu określony jest wzorem a_n=\frac{-1}{bn^2+cn}.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=7
b=9
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/25 [108%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=52. Ciąg (a_1+2,a_2-5,a_3-28) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(3n+2)^2-(1-5n)^2}{(5n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20836 ⋅ Poprawnie: 15/23 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 1-\frac{2x+1}{2}+\frac{(2x+1)^2}{4}-...\geqslant 2 .

Rozwiązanie zapisz w postaci przedziału liczbowego. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Pierwiastki wielomianu W(x)=x^3+bx^2+cx+d+k tworzą ciąg geometryczny o ilorazie 2. Ponadto W(1)=-110. Wyznacz wzór tego wielomianu.

Podaj d.

Dane
k=-11
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Funkcja f określona jest wzorem: f(x)=\frac{3(x+1)}{x-1}+\frac{3(x+1)^2}{(x-1)^2}+\frac{3(x+1)^3}{(x-1)^3}+... .

Przedział liczbowy (-\infty, p) jest dziedziną tej funkcji. Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Przedział liczbowy (p, +\infty) jest zbiorem wartości tej funkcji. Podaj p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Przedział liczbowy \langle p, q) jest rozwiązaniem nierówności f(x)\leqslant 0.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 12.4 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm