« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=9
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%]
W chwili początkowej (t=0) masa substancji jest równa
6 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 20\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%]
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 11/11 [100%]
Nieskończony ciąg geometryczny (a_n) jest określony dla każdej
liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu
(a_n) o numerach nieparzystych jest równa
48, tj.
a_1+a_3+a_5+...=48.
Ponadto a_1+a_3=\frac{25}{12}\cdot a_2.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%]