« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k).
Oblicz a_3.
Dane
k=2 m=443
Odpowiedź:
a_{3}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu (a_n) jest równy
m.
Wyznacz numer tego wyrazu.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%]
Boki AB, BC,
CD i DA czworokąta
wpisanego w okrąg mają długości odpowiednio 2a,
2a, a\sqrt{5} i
a\sqrt{3}, zaś kąty przy wierzchołkach
A, B i
C tworzą ciąg arytmetyczny.
Oblicz pole powierzchni tego czworokąta.
Dane
a=7
Odpowiedź:
P=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%]
Dany jest nieskończony ciąg okręgów (o_n) o równaniach
x^2+y^2=3^{21-n}, gdzie n\geqslant 1.
Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem o_{2k}.
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{21-2k}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie
m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat