Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=1
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=8
Odpowiedzi:
A. malejący B. niemonotoniczny
C. rosnący D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-1}{n+5} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n^2-3n-4}{-4-5n-4n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -\frac{1}{4} B. -\frac{3}{8}
C. -\frac{1}{8} D. \frac{1}{6}
E. \frac{1}{2} F. \frac{1}{12}
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 3, a suma wszystkich jego wyrazów jest równa 2.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 2. Wszystkie wyrazy tego ciągu spełniają warunek a_n=2a_{n+1}+3n^2+2.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=93
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/24 [112%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=42. Ciąg (a_1+2,a_2-7,a_3-34) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/16 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{-7n^3+3n}{(1-3n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/18 [50%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego dla n\geqslant 1, jest równa 6, a suma kwadratów wszystkich wyrazów tego ciągu jest równa 8.

Oblicz iloraz ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/13 [69%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dany jest ciąg określony wzorem a_n=(-1)^n\cdot (2n-1). Uzasadnij, że ciąg b_n=a_{2n+1} jest arytmetyczny.

Oblicz S_{k} ciągu (b_n).

Dane
k=51
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz S_{k} ciągu (a_n).
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-31004 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto a_1=1800 i a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n), określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie k=48 początkowych kolejnych wyrazów ciągu (b_n). Ponadto a_3=b_4.

Oblicz iloraz q ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Wyznacz b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm