Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=9
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{6}=0.16666666666667
b=10
Odpowiedzi:
A. nierosnący B. niemonotoniczny
C. niemalejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-5}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(2n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/10 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{9}{10}, a suma wszystkich jego wyrazów jest równa \frac{45}{8}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 132/129 [102%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 6 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 20\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 11/11 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg liczbowy (x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x,y-5+m,z) jest geometryczny.

Podaj największe możliwe x.

Dane
m=3
x+y+z=30
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(7n+2)^2-(1-5n)^2}{(5n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wynacz te wartości x\in\mathbb{R}, dla których ciąg liczbowy \left(1, \frac{8x+1}{2x+3},\left(\frac{8x+1}{2x+3}\right)^2,...\right) jest zbieżny.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30895 ⋅ Poprawnie: 48/65 [73%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Nieskończony ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu (a_n) o numerach nieparzystych jest równa 48, tj. a_1+a_3+a_5+...=48. Ponadto a_1+a_3=\frac{25}{12}\cdot a_2.

Wyznacz iloraz q tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a,b,c+64+k) jest ciągiem geometrycznym, natomiast ciąg (a,b,c+k) jest ciągiem arytmetycznym. Ponadto ciąg (a,b-8,c+k) jest geometryczny.

Podaj najmniejsze możliwe c.

Dane
k=64
Odpowiedź:
c_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm