Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=5
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=10
Odpowiedzi:
A. rosnący B. niemonotoniczny
C. nierosnący D. malejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-1}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{-5}{\sqrt{64n^2+1}-8} jest:
Odpowiedzi:
A. -5 B. 8
C. +\infty D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 5/16 [31%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{6}{\left(\sqrt{5}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=30
l=50
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=103
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 20/31 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa -13. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \lim_{n\to+\infty}\left(\sqrt{100n^2+7n}-\sqrt{100n^2+2}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania \tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1), gdzie x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)- \left\{-\frac{\pi}{4}\right\}.

Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi. Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/13 [69%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dany jest ciąg określony wzorem a_n=(-1)^n\cdot (2n-1). Uzasadnij, że ciąg b_n=a_{2n+1} jest arytmetyczny.

Oblicz S_{k} ciągu (b_n).

Dane
k=55
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz S_{k} ciągu (a_n).
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 10/52 [19%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Określamy kwadraty K_1, K_2, K_3,... następująco:
  • K_1 jest kwadratem o boku długości a,
  • K_2jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_1 i dzieli ten bok w stosunku 1:9
  • K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_2 i dzieli ten bok w stosunku 1:9 i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
  • K_n jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_{n-1} i dzieli ten bok w stosunku 1:9

    Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku przedstawiono kwadraty utworzone w sposób opisany powyżej:

    Wyznacz iloraz tego ciągu.

  • Odpowiedź:
    q= \cdot
    (wpisz trzy liczby całkowite)
    Podpunkt 12.2 (2 pkt)
     Przyjmując, że a=5, oblicz sumę obwodów wszystkich kwadratów.
    Odpowiedź:
    S= + \cdot
    (wpisz cztery liczby całkowite)


    ☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

    Masz pytania? Napisz: k42195@poczta.fm