Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=5
Odpowiedzi:
A. malejący
B. niemalejący
C. rosnący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{20} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-4}{\sqrt{9n^2+1}-3}
jest:
Odpowiedzi:
A. +\infty
B. -4
C. 3
D. -\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
2 , a suma
wszystkich jego wyrazów jest równa
7 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
(a_n) , w którym
S_n=a_1+a_2+a_3+...+a_n , dla każdego
n\in\mathbb{N_{+}} . Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k) .
Oblicz a_3 .
Dane
k=-4
m=305
Odpowiedź:
a_{3}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu
(a_n) jest równy
m .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez
a lub przez
b .
Dane
a=7
b=11
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/25 [108%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=26 . Ciąg
(a_1+2,a_2-1,a_3-12) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj trzeci wyraz ciągu
(a_n) .
Odpowiedź:
a_3=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}\frac{2n^2-5n+2}{(5n+7)(-6n+4)}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{10}}{10} , a suma jego wszystkich wyrazów
jest równa
10+\sqrt{10} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W ciągu arytmetycznym
\left(a_n\right)
zachodzi wzór
S_n=-\frac{7}{4}n+\frac{1}{4}n^2 , dla
każdej liczby naturalnej dodatniej.
Oblicz sumę k początkowych wyrazów tego ciągu o
numerach nieparzystych.
Dane
k=28
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=s . Ciąg
(a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Dane
s=21
b=29
c=49
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj iloraz ciągu
(a_n) .
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż