Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=5
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{9}=0.11111111111111
b=8
Odpowiedzi:
A. nierosnący B. rosnący
C. malejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-8}{n+7} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{3n^2-3n+5}{2+5n-5n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{1}{5} B. -\frac{4}{5}
C. \frac{6}{5} D. -\frac{9}{10}
E. -\frac{3}{10} F. -\frac{3}{5}
Zadanie 5.  1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=8\cdot 10^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Ciąg \left( \sqrt[3]{12}+\sqrt[3]{6}, \frac{\sqrt{2}(m+3)}{4}, \sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36} \right) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=8
b=17
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 9/8 [112%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg liczbowy (x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x,y-5+m,z) jest geometryczny.

Podaj największe możliwe x.

Dane
m=5
x+y+z=28
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+8)-1)}{(\sqrt{8}n+1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wynacz te wartości x\in\mathbb{R}, dla których ciąg liczbowy \left(1, \frac{12x+1}{2x+3},\left(\frac{12x+1}{2x+3}\right)^2,...\right) jest zbieżny.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym \left(a_n\right) zachodzi wzór S_n=-\frac{7}{4}n+\frac{1}{4}n^2, dla każdej liczby naturalnej dodatniej.

Oblicz sumę k początkowych wyrazów tego ciągu o numerach nieparzystych.

Dane
k=98
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, którego iloraz q jest 306 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek |q|\lessdot 1. Stosunek sumy S_{N} wszystkich wyrazów tego ciągu o numerach nieparzystych do sumy S_{P} wszystkich wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj. \frac{S_{N}}{S_{P}}=S_{N}-S_{P}. Wyznacz iloraz q tego ciągu.

Podaj najmniejszą możliwą wartość q.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największą możliwą wartość q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm