Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 3/3 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=13
Odpowiedzi:
A. nierosnący
B. malejący
C. niemonotoniczny
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{10} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-5}{\sqrt{64n^2+1}-8}
jest:
Odpowiedzi:
A. -\infty
B. 8
C. -5
D. +\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 5/16 [31%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n)
określony wzorem
a_n=\frac{8}{\left(\sqrt{6}\right)^n}
, dla
n=1,2,3,... .
Suma wszystkich wyrazów tego ciągu jest równa
\frac{c}{\sqrt{d}+e} ,
gdzie
c,d,e\in\mathbb{Z} .
Podaj liczby c ,d i e .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=30
l=50
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/26 [103%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=86 . Ciąg
(a_1+2,a_2-4,a_3-60) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj trzeci wyraz ciągu
(a_n) .
Odpowiedź:
a_3=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/16 [75%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}
\left(\frac{7n^3+6n+5}{6n^3+1}-\frac{15n^2+2n+1}{5n^2-4}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/2 [0%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
\left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+
\left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}}
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę dodatnią, która
nie spełnia tej nierówności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pierwiastki wielomianu
W(x)=x^3+bx^2+cx+d+k
tworzą ciąg geometryczny o ilorazie
2 . Ponadto
W(1)=-110 . Wyznacz wzór tego wielomianu.
Podaj d .
Dane
k=-91
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 2/5 [40%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k,4,y+2,2z) jest ciągiem arytmetycznym.
Ciąg
(x+k,x+k+2+y,8z) jest ciągiem geometrycznym.
Wyznacz liczby
x,y,z .
Podaj najmniejsze możliwe x spełniające warunki
zadania.
Dane
k=-8
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
x spełniające warunki
zadania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Rozwiąż