Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=9
Odpowiedzi:
A. nierosnący
B. malejący
C. niemalejący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{180} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(8n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n)
określony wzorem
a_n=\frac{8}{\left(\sqrt{8}\right)^n}
, dla
n=1,2,3,... .
Suma wszystkich wyrazów tego ciągu jest równa
\frac{c}{\sqrt{d}+e} ,
gdzie
c,d,e\in\mathbb{Z} .
Podaj liczby c ,d i e .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
\left(
\sqrt[3]{12}+\sqrt[3]{6},
\frac{\sqrt{2}(m+3)}{4},
\sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36}
\right)
jest ciągiem geometrycznym.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Ciąg
(a_n) określony jest wzorem
a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3} .
Oblicz S_{k} .
Dane
k=134
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=186 . Ciąg
(a_1+2,a_2-21,a_3-140) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj trzeci wyraz ciągu
(a_n) .
Odpowiedź:
a_3=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}
\left(\frac{15n^3+6n+5}{6n^3+1}-\frac{13n^2+2n+1}{5n^2-4}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20836 ⋅ Poprawnie: 15/23 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Rozwiąż nierówność
1-\frac{2x-6}{2}+\frac{(2x-6)^2}{4}-...\geqslant 2
.
Rozwiązanie zapisz w postaci przedziału liczbowego. Podaj lewy koniec
tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Ciąg
(a,b,c) jest rosnącym ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj a .
Dane
s=126.0
t=13824
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 7/11 [63%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dany jest nieskończony szereg geometryczny
2(3x+7)-\frac{6(3x+7)}{3x+6}+\frac{18(3x+7)}{(3x+6)^2}-\frac{54(3x+7)}{(3x+6)^3}+... .
Wyznacz wszystkie wartości zmiennej x (różnej od -\frac{7}{3}
i od -2 ), dla których suma tego szeregu istnieje.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców
liczbowych tych przedziałów.
Odpowiedzi:
Podpunkt 12.2 (2 pkt)
Wyznacz wszystkie wartości zmiennej
x , dla których suma tego szeregu istnieje
i jest równa
\frac{15}{2} .
Podaj największe takie x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż