Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=3
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{4}=0.25000000000000
b=2
Odpowiedzi:
A. niemonotoniczny B. malejący
C. nierosnący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{60} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{-2}{\sqrt{n^2+1}-1} jest:
Odpowiedzi:
A. -\infty B. +\infty
C. -2 D. 1
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{4}{\left(\sqrt{2}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy -2 oraz zachodzi równość c_{n+2}-c_{n+1}=n-4 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=2
b=7
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a,b+m,1) jest arytmetyczny, zaś ciąg (1,a,b+m) jest geometryczny.

Podaj najmniejsze możliwe b.

Dane
m=-2
Odpowiedź:
b_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+5+9+...+(4n-3)}{2+(2+7)+(2+14)+...+2+(7n-7)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20275 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dany jest ciąg c_n=\left(-\frac{1}{117-2m}\right)^n, w którym wszystkie wyrazy są dodatnie, a m jest parametrem. Wyznacz te wartości parametru m, dla których szereg c_1+c_2+c_3+... jest zbieżny.

Podaj najmniejsze całkowite m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=21.0
t=216
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego jest równa \frac{12}{35}, zaś suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \frac{2}{35}.

Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm