Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=5
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{8}=-0.12500000000000
b=8
Odpowiedzi:
A. rosnący B. malejący
C. nierosnący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-7}{n+5} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-4n^2-n-5}{-2+n+2n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -3 B. \frac{2}{3}
C. -\frac{8}{3} D. 4
E. -\frac{4}{3} F. -2
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 216-72+24-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 1. Wszystkie wyrazy tego ciągu spełniają warunek a_n=3a_{n+1}+2n^2+3.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=5
b=6
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=8
q=6
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+8)-1)}{(\sqrt{8}n+1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20487 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi 16, zaś suma wszystkich wyrazów o numerach parzystych tego ciągu wynosi \frac{16}{3}.

Oblicz a_4.

Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=115.5
t=10648
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 0/2 [0%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg (x+k,4,y+2,2z) jest ciągiem arytmetycznym. Ciąg (x+k,x+k+2+y,8z) jest ciągiem geometrycznym. Wyznacz liczby x,y,z.

Podaj najmniejsze możliwe x spełniające warunki zadania.

Dane
k=4
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe x spełniające warunki zadania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm