Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=3
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{8}=-0.12500000000000
b=10
Odpowiedzi:
A. nierosnący
B. malejący
C. rosnący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-7}{n+7} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(4n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
2 , a suma
wszystkich jego wyrazów jest równa
15 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« W ciągu
(c_n) czwarty wyraz jest równy
2 oraz zachodzi równość
c_{n+2}-c_{n+1}=n+2 dla każdej liczby naturalnej
n .
Oblicz c_1 .
Odpowiedź:
c_{1}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez
a lub przez
b .
Dane
a=5
b=19
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 9/8 [112%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg liczbowy
(x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg
liczbowy
(x,y-5+m,z) jest geometryczny.
Podaj największe możliwe x .
Dane
m=5
x+y+z=28
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
y_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz
\lim_{n\to+\infty}\frac{7n^3+3n}{(1+2n)^3}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wynacz te wartości
x\in\mathbb{R} , dla których
ciąg liczbowy
\left(1, \frac{11x+1}{2x+3},\left(\frac{11x+1}{2x+3}\right)^2,...\right)
jest zbieżny.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W ciągu arytmetycznym mamy:
a_3=4 i
a_7=16 . Rozwiąż nierówność
S_n \lessdot k .
Podaj największe n spełniające tę nierówność.
Dane
k=838
Odpowiedź:
n_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa
\frac{8}{9} , zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa
\frac{4}{9} .
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż