Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=8
b=4
c=4
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=10
Odpowiedzi:
A. niemonotoniczny
B. malejący
C. rosnący
D. nierosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{100} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 21/19 [110%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-8n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
7 , a suma
wszystkich jego wyrazów jest równa
3 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
(a_n) , w którym
S_n=a_1+a_2+a_3+...+a_n , dla każdego
n\in\mathbb{N_{+}} . Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k) .
Oblicz a_3 .
Dane
k=1
m=290
Odpowiedź:
a_{3}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu
(a_n) jest równy
m .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+15}=64\cdot 4^{x+9}
.
Podaj największe x spełniające to równanie.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 20/31 [64%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
-1 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{64n^2+7n}-\sqrt{64n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/2 [0%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
\left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+
\left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}}
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę dodatnią, która
nie spełnia tej nierówności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pierwiastki wielomianu
W(x)=x^3+bx^2+cx+d+k
tworzą ciąg geometryczny o ilorazie
2 . Ponadto
W(1)=-110 . Wyznacz wzór tego wielomianu.
Podaj d .
Dane
k=-4
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/2 [0%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n) , określony dla każdej
liczby naturalnej
n\geqslant 1 . Suma trzech początkowych wyrazów ciągu
(a_n) jest równa
7 , a suma
S
wszystkich wyrazów tego ciągu jest równa
8 . Wyznacz wszystkie wartości
n , dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{2048} , gdzie
S_n oznacza sumę
n początkowych wyrazów ciągu
(a_n) .
Podaj najmniejszą możliwą wartość n , która spełnia tę nierówność.
Odpowiedź:
n_{min}=
(wpisz liczbę całkowitą)
Rozwiąż