Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=3
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{7}=-0.14285714285714
b=8
Odpowiedzi:
A. malejący B. niemonotoniczny
C. nierosnący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+6} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n^2-5n-4}{5-2n+5n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{1}{5} B. -\frac{2}{15}
C. -\frac{1}{15} D. \frac{2}{15}
E. \frac{3}{10} F. \frac{1}{10}
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 162-54+18-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=1
m=494
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=258. Ciąg \left(a_1,a_2+75,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{2n^3+3n}{(1+n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania \tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1), gdzie x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)- \left\{-\frac{\pi}{4}\right\}.

Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi. Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W ciągu geometrycznym (a+k,b+4,c) zachodzi warunek a+b+c=22-k. Ciąg liczbowy (a+k-5,b,c-11) jest ciągiem arytmetycznym. Oblicz a,b,c.

Podaj najmniejsze możliwe a.

Dane
k=1
Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm