Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ogólny wyraz ciągu
(a_n) spełnia warunek
a_{n+1}=2a_n-3n .
Oblicz piąty wyraz tego ciągu.
Dane
a_1=3
Odpowiedź:
a_{5}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/6 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{4}=-0.25000000000000
b=4
Odpowiedzi:
A. rosnący
B. malejący
C. niemonotoniczny
D. nierosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{60} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-3}{\sqrt{4n^2+1}-2}
jest:
Odpowiedzi:
A. 2
B. +\infty
C. -\infty
D. -3
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/10 [90%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{7}{4} , a suma
wszystkich jego wyrazów jest równa
7 .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
(a_n) , w którym
S_n=a_1+a_2+a_3+...+a_n , dla każdego
n\in\mathbb{N_{+}} . Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k) .
Oblicz a_3 .
Dane
k=-3
m=268
Odpowiedź:
a_{3}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu
(a_n) jest równy
m .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+7}=64\cdot 4^{x+5}
.
Podaj największe x spełniające to równanie.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 20/30 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
-9 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{9n^2+5n}-\sqrt{9n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20487 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Suma wszystkich wyrazów ciągu geometrycznego
\left(a_n\right) wynosi
9 , zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi
\frac{18}{5} .
Oblicz a_4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/13 [69%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=63
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30185 ⋅ Poprawnie: 5/5 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k-5,y,z) jest ciągiem arytmetycznym.
Ciąg
(x+k,y+3,z+4) jest ciągiem geometrycznym
rosnącym spełniającym warunek
z+4=4\cdot (x+k) .
Wyznacz liczby
x,y,z .
Podaj x .
Dane
k=-4
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Rozwiąż