Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=8
b=6
c=6
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=7
Odpowiedzi:
A. rosnący
B. malejący
C. niemonotoniczny
D. niemalejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-9}{n+6} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-6n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nieskończony ciąg geometryczny
(a_n) jest określony
w następujący sposób:
\begin{cases}
a_1=\frac{3}{10} \\
a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+}
\end{cases}
.
Oblicz sumę wszystkich wyrazów tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
(a_n) , w którym
S_n=a_1+a_2+a_3+...+a_n , dla każdego
n\in\mathbb{N_{+}} . Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k) .
Oblicz a_3 .
Dane
k=5
m=594
Odpowiedź:
a_{3}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu
(a_n) jest równy
m .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-168
a_4+a_7=336
S_k=-32766
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 11/11 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=657 ,
b_1=x ,
b_{8}=y i
b_{64}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{49n^2+4n}-\sqrt{49n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{3}}{3} , a suma jego wszystkich wyrazów
jest równa
24+8\sqrt{3} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W ciągu arytmetycznym
\left(a_n\right)
zachodzi wzór
S_n=-\frac{7}{4}n+\frac{1}{4}n^2 , dla
każdej liczby naturalnej dodatniej.
Oblicz sumę k początkowych wyrazów tego ciągu o
numerach nieparzystych.
Dane
k=112
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a,b,c+64+k) jest ciągiem geometrycznym,
natomiast ciąg
(a,b,c+k) jest ciągiem arytmetycznym.
Ponadto ciąg
(a,b-8,c+k) jest geometryczny.
Podaj najmniejsze możliwe c .
Dane
k=64
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
c .
Odpowiedź:
c_{max}=
(wpisz liczbę całkowitą)
Rozwiąż