Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=2
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/7 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{4}=-0.25000000000000
b=7
Odpowiedzi:
A. malejący B. niemonotoniczny
C. rosnący D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{60} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(8n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 10/11 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{7}{6}, a suma wszystkich jego wyrazów jest równa \frac{21}{4}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go poprzedzających. Wyznacz wzór tego ciągu.

Podaj a_{40}.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj a_{81}.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=3
q=5
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 10/13 [76%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+4}-\frac{n^2}{n-6}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20836 ⋅ Poprawnie: 16/24 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 1-\frac{2x+4}{2}+\frac{(2x+4)^2}{4}-...\geqslant 2 .

Rozwiązanie zapisz w postaci przedziału liczbowego. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30178 ⋅ Poprawnie: 49/43 [113%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Dla każdego x\in\mathbb{R_+}-\{1\} liczby \log_{2}{x}, \log_{\sqrt[k]{m}}{x} i \log_{4}{x} są trzema kolejnymi wyrazami ciągu arytmetycznego.

Wyznacz m.

Dane
k=6
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 4/4 [100%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg liczbowy \left(a_n\right) jest nieskończonym ciągiem geometrycznym malejącym. Suma trzech jego pierwszych wyrazów jest równa 35, a iloczyn tych wyrazów jest równy 1000.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Oblicz sumę wszystkich wyrazów tego ciągu o numerach nieparzystych.
Odpowiedź:
S_{np}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm