Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=3
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{7}=-0.14285714285714
b=6
Odpowiedzi:
A. rosnący B. niemonotoniczny
C. nierosnący D. malejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+4} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-n^2-5n+3}{4-4n-3n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{1}{2} B. \frac{4}{9}
C. -\frac{2}{3} D. \frac{1}{3}
E. \frac{1}{6} F. -\frac{1}{9}
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{11}{6}, a suma wszystkich jego wyrazów jest równa \frac{33}{4}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=2
m=443
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=186
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 11/12 [91%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (x,y,z) jest rosnącym ciągiem geometrycznym, zaś ciąg (b_n) ciągiem arytmetycznym. Zachodzą równości: x+y+z=147, b_1=x, b_{8}=y i b_{36}=z. Oblicz x,y,z.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20816 ⋅ Poprawnie: 14/14 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+3+5+...+(2\cdot(n+7)-1)}{(7n-1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania \tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1), gdzie x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)- \left\{-\frac{\pi}{4}\right\}.

Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi. Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30177 ⋅ Poprawnie: 51/44 [115%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Boki AB, BC, CD i DA czworokąta wpisanego w okrąg mają długości odpowiednio 2a, 2a, a\sqrt{5} i a\sqrt{3}, zaś kąty przy wierzchołkach A, B i C tworzą ciąg arytmetyczny.

Oblicz pole powierzchni tego czworokąta.

Dane
a=7
Odpowiedź:
P= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest nieskończony ciąg okręgów (o_n) o równaniach x^2+y^2=3^{21-n}, gdzie n\geqslant 1. Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem o_{2k-1} i wewnętrznym okręgiem o_{2k}.

Wzór na pole powierzchni pierścienia P_k można zapisać w postaci S_k=a\cdot \pi\cdot 3^{21-2k}.
Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.

Wyznacz iloraz q tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą liczbą całkowitą dodatnią.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm