Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=5
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{8}=0.12500000000000
b=7
Odpowiedzi:
A. nierosnący B. niemonotoniczny
C. rosnący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{130} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{1}{\sqrt{25n^2+1}-5} jest:
Odpowiedzi:
A. 5 B. -\infty
C. 1 D. +\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 7, a suma wszystkich jego wyrazów jest równa 10.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/43 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Ciąg \left( \sqrt[3]{12}+\sqrt[3]{6}, \frac{\sqrt{2}(m+3)}{4}, \sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36} \right) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 47/38 [123%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=9
b=16
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=7
q=6
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(5n+2)^2+(1-6n)^2}{(6n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 10/15 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie 1+\frac{1}{1-\frac{1}{2}x}+\frac{1}{\left(1-\frac{1}{2}x\right)^2}+...=1-x .

Podaj rozwiązanie tego równania.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » W ciągu arytmetycznym mamy: a_{13}=p i a_{30}=q. Wyznacz najmniejszą wartość n, dla której S_n ma wartość najmniejszą.

Podaj n.

Dane
p=3
q=156
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 13/48 [27%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dany jest nieskończony szereg geometryczny 2(3x+2)-\frac{6(3x+2)}{3x+1}+\frac{18(3x+2)}{(3x+1)^2}-\frac{54(3x+2)}{(3x+1)^3}+....

Wyznacz wszystkie wartości zmiennej x (różnej od -\frac{2}{3} i od -\frac{1}{3}), dla których suma tego szeregu istnieje.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości zmiennej x, dla których suma tego szeregu istnieje i jest równa \frac{15}{2}.

Podaj największe takie x.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm