Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 4/4 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=4
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=4
Odpowiedzi:
A. rosnący B. niemalejący
C. malejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-8}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{3n^2-n+4}{-3-n+2n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{3}{4} B. -\frac{1}{2}
C. \frac{3}{2} D. 1
E. -1 F. \frac{9}{4}
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 3, a suma wszystkich jego wyrazów jest równa 13.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=60
l=80
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=248
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=9
q=4
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty}\frac{10n^2-5n+2}{(5n+7)(-10n+4)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 10/15 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie 1+\frac{1}{1-\frac{1}{6}x}+\frac{1}{\left(1-\frac{1}{6}x\right)^2}+...=1-\frac{1}{3}x .

Podaj rozwiązanie tego równania.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=42.0
t=1728
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pr-30886 ⋅ Poprawnie: 21/33 [63%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg (a,b,c-4) jest trzywyrazowym ciągiem geometrycznym o wyrazach dodatnich. Ciąg (2a,2b,c-3) jest trzywyrazowym ciągiem arytmetycznym. Ponadto spełniony jest warunek c-b=10.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 12.2 (3 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm