« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=6
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/7 [57%]
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q}.
Oblicz a_2.
Dane
p=2 q=-2
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn}.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%]
Czterowyrazowy ciąg (a,b,c,d) jest arytmetyczny i rosnący. Różnica pomiędzy pierwszym
a czwartym wyrazem tego ciągu jest równa 72.
Ponadto ciąg (a+8,b,c) jest geometryczny.
Oblicz różnicę ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat