Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=5
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/6 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{3}=-0.33333333333333
b=12
Odpowiedzi:
A. niemonotoniczny B. nierosnący
C. malejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{30} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-8n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=3\cdot 11^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=30
l=50
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=105
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 20/30 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa -11. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{-11n^3+3n}{(1+3n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg (c_n) określony jest rekurencyjnie: \begin{cases} c_1=\frac{1}{2} \\ c_{n}=\frac{11\cdot c_{n-1}}{1+2+3+...+21}\text{, dla }n > 1 \end{cases} oraz S_n=c_1+c_2+c_3+...+c_n.

Oblicz \lim_{n\to\infty}S_n.

Odpowiedź:
\lim_{n\to\infty}S_n=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Ciąg (a,b,c) jest ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj najmniejsze możliwe a.

Dane
s=52.5
t=1000
Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pr-31063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość a_1+a_2+a_3=\frac{403}{25}. Wyrazy a_1, a_2, a_3 są – odpowiednio –siódmym , drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.

Oblicz iloraz ciągu geometrycznego.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
 Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm