Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=10
Odpowiedzi:
A. malejący
B. nierosnący
C. rosnący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{190} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{5}{\sqrt{64n^2+1}-8}
jest:
Odpowiedzi:
A. -\infty
B. +\infty
C. 5
D. 8
Zadanie 5. 1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz sumę wszystkich wyrazów ciągu określonego wzorem
a_n=9\cdot 12^{-n} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 127/124 [102%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
W chwili początkowej (
t=0 ) masa substancji jest równa
6 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa
19\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej
t\geqslant 0
funkcja
m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji
m(t) .
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Ciąg
(a_n) określony jest wzorem
a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3} .
Oblicz S_{k} .
Dane
k=136
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 9/8 [112%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg liczbowy
(x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg
liczbowy
(x,y-5+m,z) jest geometryczny.
Podaj największe możliwe x .
Dane
m=6
x+y+z=27
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
y_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}
\left(\frac{16n^3+6n+5}{6n^3+1}-\frac{14n^2+2n+1}{5n^2-4}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/18 [50%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego
(a_n) , określonego
dla
n\geqslant 1 , jest równa
8 , a suma kwadratów
wszystkich wyrazów tego ciągu jest równa
11 .
Oblicz iloraz ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pierwiastki wielomianu
W(x)=x^3+bx^2+cx+d+k
tworzą ciąg geometryczny o ilorazie
2 . Ponadto
W(1)=-110 . Wyznacz wzór tego wielomianu.
Podaj d .
Dane
k=84
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=s . Ciąg
(a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Dane
s=455
b=-12
c=-344
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj iloraz ciągu
(a_n) .
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż