Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=4
b=8
c=-2
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=13
Odpowiedzi:
A. niemonotoniczny
B. nierosnący
C. malejący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-1}{n+9} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-5}{\sqrt{64n^2+1}-8}
jest:
Odpowiedzi:
A. 8
B. +\infty
C. -5
D. -\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 10/11 [90%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{1}{2} , a suma
wszystkich jego wyrazów jest równa
\frac{25}{8} .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=30
l=50
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+1}=64\cdot 4^{x+2}
.
Podaj największe x spełniające to równanie.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Ciąg
(a+p,b+q,10) jest arytmetyczny, zaś ciąg
(10,b+q+5,2(a+p)) jest geometryczny.
Oblicz a\cdot b .
Dane
p=1
q=10
Odpowiedź:
a\cdot b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}\frac{2n^2-5n+2}{(11n+7)(-8n+4)}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania
\tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1) , gdzie
x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)-
\left\{-\frac{\pi}{4}\right\} .
Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi .
Podaj liczbę b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30178 ⋅ Poprawnie: 49/43 [113%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
Dla każdego
x\in\mathbb{R_+}-\{1\} liczby
\log_{2}{x} ,
\log_{\sqrt[k]{m}}{x}
i
\log_{4}{x} są trzema kolejnymi wyrazami ciągu
arytmetycznego.
Wyznacz m .
Dane
k=3
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
W niestałym ciągu arytmetycznym
a_1=a . Ponadto
wyrazy
a_2 ,
a_3 i
a_6 sa trzema kolejnymi wyrazami ciągu
geometrycznego. Ostatni
k-ty wyraz tego ciągu
jest równy
a_k=p .
Oblicz a_1+a_2+a_3+...+a_k .
Dane
a=-10
p=450
Odpowiedź:
a_1+a_2+a_3+...+a_k=
(wpisz liczbę całkowitą)
Rozwiąż