Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-6
b=6
c=8
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 5/5 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=10
Odpowiedzi:
A. rosnący B. nierosnący
C. niemonotoniczny D. malejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/7 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{3n^2-4n+3}{-5+4n-4n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{1}{4} B. -\frac{3}{4}
C. -\frac{1}{2} D. -1
E. -\frac{9}{8} F. -\frac{3}{8}
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 162-54+18-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/9 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go poprzedzających. Wyznacz wzór tego ciągu.

Podaj a_{65}.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj a_{131}.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 47/37 [127%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=7
b=20
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 11/10 [110%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg liczbowy (x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x,y-5+m,z) jest geometryczny.

Podaj największe możliwe x.

Dane
m=4
x+y+z=29
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/16 [75%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty} \left(\frac{12n^3+6n+5}{6n^3+1}-\frac{15n^2+2n+1}{5n^2-4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg (c_n) określony jest rekurencyjnie: \begin{cases} c_1=\frac{1}{2} \\ c_{n}=\frac{29\cdot c_{n-1}}{1+2+3+...+57}\text{, dla }n > 1 \end{cases} oraz S_n=c_1+c_2+c_3+...+c_n.

Oblicz \lim_{n\to\infty}S_n.

Odpowiedź:
\lim_{n\to\infty}S_n=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Ciąg (a,b,c) jest ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj najmniejsze możliwe a.

Dane
s=94.5
t=5832
Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=s. Ciąg (a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Dane
s=273
b=10
c=-172
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj iloraz ciągu (a_n).
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm