Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=1
b=5
c=-2
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{4}=0.25000000000000
b=9
Odpowiedzi:
A. niemonotoniczny
B. rosnący
C. niemalejący
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-3}{n+8} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-3}{\sqrt{49n^2+1}-7}
jest:
Odpowiedzi:
A. 7
B. +\infty
C. -\infty
D. -3
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
7 , a suma
wszystkich jego wyrazów jest równa
10 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Pierwszy wyraz ciągu
(a_n) wynosi
0 . Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{35} .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez
a lub przez
b .
Dane
a=7
b=13
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=219 . Ciąg
\left(a_1,a_2+\frac{147}{2},a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu
(a_n) .
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20816 ⋅ Poprawnie: 14/14 [100%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty} \frac{1+3+5+...+(2\cdot(n+3)-1)}{(3n-1)^2}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Ciąg
(c_n) określony jest rekurencyjnie:
\begin{cases}
c_1=\frac{1}{2} \\
c_{n}=\frac{15\cdot c_{n-1}}{1+2+3+...+29}\text{, dla }n > 1
\end{cases}
oraz
S_n=c_1+c_2+c_3+...+c_n .
Oblicz \lim_{n\to\infty}S_n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
» W ciągu arytmetycznym mamy:
a_{13}=p i
a_{30}=q . Wyznacz najmniejszą wartość
n , dla której
S_n ma
wartość najmniejszą.
Podaj n .
Dane
p=-5
q=182
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg liczbowy
(a,b,c+x) jest arytmetyczny i
a+b+c+x=33 .
Ciąg liczbowy
(a-1,b+5,c+x+19) jest geometryczny.
Wyznacz
a,b,c .
Podaj najmniejsze możliwe c .
Dane
x=-3
Odpowiedź:
c_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
c .
Odpowiedź:
c_{max}=
(wpisz liczbę całkowitą)
Rozwiąż