Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=4
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=8
Odpowiedzi:
A. niemonotoniczny B. malejący
C. niemalejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+7} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{2n^2-5n+3}{4-3n-4n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -\frac{1}{2} B. -\frac{1}{4}
C. -\frac{2}{3} D. 1
E. -\frac{3}{4} F. -\frac{1}{3}
Zadanie 5.  1 pkt ⋅ Numer: pr-11639 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{11}}. Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{11}}.
Wynika stąd, że liczba x+y jest równa:
Odpowiedzi:
A. \frac{3\sqrt{11}}{10} B. \frac{22}{15}
C. \frac{1}{5} D. \frac{121}{5}
E. \frac{77}{5} F. \frac{11}{5}
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=1
m=574
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=7
b=15
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 11/11 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (x,y,z) jest rosnącym ciągiem geometrycznym, zaś ciąg (b_n) ciągiem arytmetycznym. Zachodzą równości: x+y+z=342, b_1=x, b_{13}=y i b_{97}=z. Oblicz x,y,z.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21175 ⋅ Poprawnie: 7/15 [46%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Ciąg (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1 wzorem a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p} gdzie p jest liczbą rzeczywistą dodatnią.

Oblicz wartość p, dla której granica ciągu (a_n) jest równa \frac{9}{2}.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20836 ⋅ Poprawnie: 15/23 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 1-\frac{2x-1}{2}+\frac{(2x-1)^2}{4}-...\geqslant 2 .

Rozwiązanie zapisz w postaci przedziału liczbowego. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W niestałym ciągu arytmetycznym a_1=a. Ponadto wyrazy a_2, a_3 i a_6 sa trzema kolejnymi wyrazami ciągu geometrycznego. Ostatni k-ty wyraz tego ciągu jest równy a_k=p.

Oblicz a_1+a_2+a_3+...+a_k.

Dane
a=2
p=-74
Odpowiedź:
a_1+a_2+a_3+...+a_k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm