» Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{50}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj a_{101}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%]
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/25 [108%]
Dany jest nieskończony ciąg okręgów (o_n) o równaniach
x^2+y^2=3^{11-n}, gdzie n\geqslant 1.
Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem o_{2k}.
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{11-2k}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie
m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat