« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=10
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Nieskończony ciąg geometryczny (a_n) jest określony dla każdej
liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu
(a_n) o numerach nieparzystych jest równa
144, tj.
a_1+a_3+a_5+...=144.
Ponadto a_1+a_3=\frac{5}{2}\cdot a_2.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 1/1 [100%]
Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej
liczby naturalnej n\geqslant 1, którego iloraz q
jest 110 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek
|q|\lessdot 1. Stosunek sumy S_{N} wszystkich
wyrazów tego ciągu o numerach nieparzystych do sumy S_{P} wszystkich
wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj.
\frac{S_{N}}{S_{P}}=S_{N}-S_{P}. Wyznacz iloraz q tego ciągu.
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największą możliwą wartość q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat