Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=5
b=-5
c=-8
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=12
Odpowiedzi:
A. rosnący
B. nierosnący
C. malejący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-1}{n+8} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-5}{\sqrt{49n^2+1}-7}
jest:
Odpowiedzi:
A. -\infty
B. -5
C. +\infty
D. 7
Zadanie 5. 1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz sumę wszystkich wyrazów ciągu określonego wzorem
a_n=2\cdot 11^{-n} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwszy wyraz ciągu
(a_n) , określonego dla
n\geqslant 1 ,
jest równy
3 . Wszystkie wyrazy tego ciągu spełniają warunek
a_n=4a_{n+1}+5n^2+3 .
Oblicz a_3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-56
a_4+a_7=112
S_k=21846
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=146 . Ciąg
\left(a_1,a_2+49,a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu
(a_n) .
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{81n^2+10n}-\sqrt{81n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{10}}{10} , a suma jego wszystkich wyrazów
jest równa
20+2\sqrt{10} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Ciąg
(a,b,c) jest ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj najmniejsze możliwe a .
Dane
s=42.0
t=512
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
W ciągu geometrycznym
(a+k,b+4,c) zachodzi warunek
a+b+c=22-k . Ciąg liczbowy
(a+k-5,b,c-11) jest ciągiem arytmetycznym.
Oblicz
a,b,c .
Podaj najmniejsze możliwe a .
Dane
k=-8
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Rozwiąż