Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=4
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=8
Odpowiedzi:
A. niemalejący B. nierosnący
C. niemonotoniczny D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{180} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{4}{\sqrt{49n^2+1}-7} jest:
Odpowiedzi:
A. 7 B. 4
C. +\infty D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{13}{10}, a suma wszystkich jego wyrazów jest równa \frac{65}{8}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy 3 oraz zachodzi równość c_{n+2}-c_{n+1}=n+2 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=186. Ciąg (a_1+2,a_2-20,a_3-138) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(6n+2)^2+(1-5n)^2}{(5n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wynacz te wartości x\in\mathbb{R}, dla których ciąg liczbowy \left(1, \frac{13x+1}{2x+3},\left(\frac{13x+1}{2x+3}\right)^2,...\right) jest zbieżny.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » W ciągu arytmetycznym mamy: a_{13}=p i a_{30}=q. Wyznacz najmniejszą wartość n, dla której S_n ma wartość najmniejszą.

Podaj n.

Dane
p=8
q=178
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=s. Ciąg (a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Dane
s=365
b=-1
c=-247
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj iloraz ciągu (a_n).
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm