Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=5
Odpowiedzi:
A. niemalejący
B. niemonotoniczny
C. rosnący
D. nierosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-9}{n+4} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-2n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n)
określony wzorem
a_n=\frac{9}{\left(\sqrt{5}\right)^n}
, dla
n=1,2,3,... .
Suma wszystkich wyrazów tego ciągu jest równa
\frac{c}{\sqrt{d}+e} ,
gdzie
c,d,e\in\mathbb{Z} .
Podaj liczby c ,d i e .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« W ciągu
(c_n) czwarty wyraz jest równy
4 oraz zachodzi równość
c_{n+2}-c_{n+1}=n-1 dla każdej liczby naturalnej
n .
Oblicz c_1 .
Odpowiedź:
c_{1}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Ciąg
(a_n) określony jest wzorem
a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3} .
Oblicz S_{k} .
Dane
k=136
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 10/10 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=279 ,
b_1=x ,
b_{13}=y i
b_{73}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21175 ⋅ Poprawnie: 7/15 [46%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Ciąg
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 wzorem
a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p}
gdzie
p jest liczbą rzeczywistą dodatnią.
Oblicz wartość p , dla której granica ciągu (a_n)
jest równa \frac{5}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{2}}{2} , a suma jego wszystkich wyrazów
jest równa
18+9\sqrt{2} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W ciągu arytmetycznym mamy:
a_3=4 i
a_7=16 . Rozwiąż nierówność
S_n \lessdot k .
Podaj największe n spełniające tę nierówność.
Dane
k=954
Odpowiedź:
n_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Funkcja
f określona jest wzorem:
f(x)=\frac{3(x+4)}{x+2}+\frac{3(x+4)^2}{(x+2)^2}+\frac{3(x+4)^3}{(x+2)^3}+...
.
Przedział liczbowy (-\infty, p) jest dziedziną tej
funkcji. Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Przedział liczbowy
(p, +\infty) jest zbiorem wartości
tej funkcji. Podaj
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
Przedział liczbowy
\langle p, q) jest rozwiązaniem
nierówności
f(x)\leqslant 0 .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 12.4 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż