Podgląd testu : lo2@sp-20-kombinatoryka-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 99/238 [41%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na prostej
k zaznaczono
m=8 różnych punktów,
zaś na innej prostej równoległej do prostej
k zaznaczono
n=2 różnych punktów.
Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich
wierzchołkami?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 910/1038 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wszystkich liczb naturalnych
9 -ciocyfrowych, w których zapisie
dziesiętnym występują tylko cyfry
0 ,
1
i
6 (np.
16\ 061 ), jest:
Odpowiedzi:
A. 2\cdot 3^9
B. 2\cdot 3^8
C. 2\cdot 8^3
D. 3^9
Zadanie 3. 1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 252/361 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wszystkich trzycyfrowych liczb naturalnych większych od
600
o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5-1
B. 4\cdot 5\cdot 5
C. 2\cdot 5\cdot 5
D. 2\cdot 10\cdot 10-1
Zadanie 4. 1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 91/115 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Z wszystkich cyfr należących do zbioru
\{
3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek,
a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.
Ile różnych liczb może w ten sposób powstać?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 99/157 [63%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Liczba
x\in\{2,3,4,5,6,7,8\} i liczba
y\in\{
1,2,3,4,5,6,7,8,9\} . Liczba
x\cdot y jest parzysta.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11290 ⋅ Poprawnie: 29/45 [64%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba naturalna dwucyfrowa dzieli się przez jakąkolwiek liczbę ze zbioru
\{7,8\} .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11514 ⋅ Poprawnie: 195/833 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Czterocyfrowa liczba całkowita dodatnia zapisana jest za pomocą
różnych cyfr, a jej cyfra jedności należy do zbioru
\{0,3,7,8,9\} .
Ile jest takich liczb:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 81/138 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Przy sklepie, po dwóch stronach ulicy jest po
k=20 miejsc parkingowych.
Na ile sposobów można zaparkować na nich sześć samochodów?
Odpowiedzi:
A. 40!
B. 35\cdot 36\cdot 37\cdot ...\cdot 40
C. 40^2
D. 20^2
Zadanie 9. 1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 152/178 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ze wszystkich cyfr zbioru
\{
1,2,3,4,5,6,7,8\} utworzono
liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 78/159 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Święty Mikołaj zapakował
9 różnych prezentów
do
9 różnych mikołajowych worków, tak aby żaden worek nie był pusty.
Na ile sposóbów mógł to zrobić?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 110/143 [76%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na zebranie zarządu spółki przyszło
19 akcjonariuszy
i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami
spotkania.
Ile było wszystkich powitań.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 164/235 [69%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Na parkingu ustawiono
13 opli i
3 fordów.
Wszystkie ople stoją przed fordami.
Takich ustawień samochodów jest:
Odpowiedzi:
A. 13\cdot 3
B. 2^{13}\cdot 2^{3}
C. (13+3)!
D. 13!\cdot 3!
Zadanie 13. 1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Iloczyn wszystkich cyfr liczby naturalnej składającej się z
36 cyfr jest
liczbą pierwszą.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 12/34 [35%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym
tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od
1 do
6 , w taki sposób,
że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.
Ile istnieje sposobów takiego usadzenia dzieci przy stole?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11802 ⋅ Poprawnie: 815/999 [81%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej
3 jest
Odpowiedzi:
A. 12
B. 6
C. 4
D. 16
E. 8
F. 10
Rozwiąż