Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 194/282 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 15 różnych punktów zielonych i 10 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 741/789 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 10 czapek, 7 szalików i 10 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 252/361 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5-1 B. 2\cdot 5\cdot 5
C. 4\cdot 5\cdot 5 D. 2\cdot 10\cdot 10-1
Zadanie 4.  1 pkt ⋅ Numer: pp-11272 ⋅ Poprawnie: 182/282 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Liczba dwucyfrowa jest większa od 47 i składa się z różnych cyfr.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11280 ⋅ Poprawnie: 76/214 [35%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Iloczyn cyfr liczby trzycyfrowej jest równy 0, a cyfra jedności tej liczby jest nie większa niż 9.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11293 ⋅ Poprawnie: 144/233 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Z cyfr należących do zbioru \{2,3,7\} utworzono liczbę czterocyfrową parzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 283/368 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=5-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 14 B. 10
C. 9 D. 12
E. 11 F. 8
Zadanie 8.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 317/423 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=44
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11296 ⋅ Poprawnie: 40/57 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Każdy z k=10 kwadratów należy pomalować jednym z 10 dostępnych kolorów, tak aby każdy kwadrat był jednokolorowy i pomalowany innym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11268 ⋅ Poprawnie: 47/73 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W przedszkolu 6 chłopców i d dziewczynek ustawiało się w szeregu jedno dziecko za drugim w taki sposób, że ani dwaj chłopcy, ani dwie dziewczynki nie stały obok siebie. Wszystkich możliwych ustawień było 1036800.

Wyznacz liczbę d.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 323/410 [78%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na 9 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,9\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez pi nie większych niż d?
Dane
p=5
d=2026
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11271 ⋅ Poprawnie: 20/50 [40%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » W liczbie składającej się z k=6 cyfr, iloczyn wszystkich cyfr jest równy 105.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11260 ⋅ Poprawnie: 174/313 [55%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wśród 21 książek są książki A i B.

Na ile sposobów można ustawić te książki na półce w taki sposób, aby książki A i B stały obok siebie?

Odpowiedzi:
A. 40\cdot 361 B. 420\cdot 19!
C. 40\cdot 19! D. 400\cdot 19!
Zadanie 15.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 89/104 [85%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 9\cdot 5\cdot 10^3 B. 4\cdot 10^5
C. 9\cdot 2\cdot 10^3 D. 5\cdot 10^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm