Podgląd testu : lo2@sp-20-kombinatoryka-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 97/236 [41%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na prostej
k zaznaczono
m=8 różnych punktów,
zaś na innej prostej równoległej do prostej
k zaznaczono
n=3 różnych punktów.
Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich
wierzchołkami?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 143/350 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest
o
6 większa od cyfry tysięcy.
Ile jest takich liczb?
Odpowiedź:
ilosc\ liczb=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 337/453 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych o różnych cyfrach i podzielnych przez
5 jest:
Odpowiedzi:
A. 9\cdot 10\cdot 9\cdot 1
B. 9\cdot 9\cdot 8\cdot 1
C. 8\cdot 9\cdot 9\cdot 1
D. 8\cdot 8\cdot 7\cdot 1
Zadanie 4. 1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 90/114 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Z wszystkich cyfr należących do zbioru
\{
3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek,
a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.
Ile różnych liczb może w ten sposób powstać?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 113/204 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest
cyfrą nieparzystą.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 79/102 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczba naturalna czterocyfrowa
k spełnia nierówność
k \lessdot 8245 i została zapisana za pomocą cyfr
ze zbioru
\{3,5,7,9\} w taki sposób, że wszystkie
jej cyfry są różne.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11514 ⋅ Poprawnie: 194/832 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Czterocyfrowa liczba całkowita dodatnia zapisana jest za pomocą
różnych cyfr, a jej cyfra jedności należy do zbioru
\{0,3,6,8,9\} .
Ile jest takich liczb:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 199/302 [65%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Na ile sposobów
k=6 osób może usiąść na
n=8 krzesłach?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 146/176 [82%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ze wszystkich cyfr zbioru
\{
1,2,3,4,5,6,7,8\} utworzono
liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 56/74 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Istnieje
\frac{30!}{30} wszystkich różnych ustawień na półce
k tomowej encyklopedii.
Podaj liczbę k .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 109/142 [76%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na zebranie zarządu spółki przyszło
19 akcjonariuszy
i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami
spotkania.
Ile było wszystkich powitań.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 35/64 [54%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» W liczbie składającej się z
k=9 cyfr, iloczyn wszystkich cyfr jest równy
42 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11271 ⋅ Poprawnie: 19/49 [38%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
» W liczbie składającej się z
k=5 cyfr, iloczyn wszystkich cyfr jest równy
105 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 14/32 [43%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Pewne słowo
k=9 literowe zawiera dwie różne samogłoski
i
p=7 różnych spółgłosek.
Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 88/103 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 9\cdot 5\cdot 10^3
B. 9\cdot 2\cdot 10^3
C. 4\cdot 10^5
D. 5\cdot 10^4
Rozwiąż