Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 29/44 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 7 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 567/728 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wszystkich liczb naturalnych 8-ciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5 i 9 (np. 59\ 095), jest:
Odpowiedzi:
A. 2\cdot 3^7 B. 2\cdot 7^3
C. 3^8 D. 2\cdot 3^8
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 177/309 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 1 B. 9\cdot 8\cdot 7\cdot 1
C. 9\cdot 10\cdot 10\cdot 1 D. 9\cdot 9\cdot 9\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 78/99 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 1,2,3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11280 ⋅ Poprawnie: 67/201 [33%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Iloczyn cyfr liczby trzycyfrowej jest równy 0, a cyfra jedności tej liczby jest nie większa niż 6.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11290 ⋅ Poprawnie: 18/31 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba naturalna dwucyfrowa dzieli się przez jakąkolwiek liczbę ze zbioru \{5,6\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 160/255 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 9 B. 6
C. 12 D. 7
E. 10 F. 8
Zadanie 8.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 301/404 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=37
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 104/142 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 74/153 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj zapakował 6 różnych prezentów do 6 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11263 ⋅ Poprawnie: 84/187 [44%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zamawiając obiad mamy do wyboru 9 różnych surówek, 3 rodzaje kompotu i 2 różne sosy.

Na ile sposobów możemy wybrać składniki jeśli wybierami dwie surówki, jeden kompot i jeden sos?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 157/226 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na parkingu ustawiono 5 opli i 3 fordów. Wszystkie ople stoją przed fordami.

Takich ustawień samochodów jest:

Odpowiedzi:
A. 2^{5}\cdot 2^{3} B. 2\cdot 5!\cdot 3!
C. 5!\cdot 3! D. (5+3)!
Zadanie 13.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 15/35 [42%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 15 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11260 ⋅ Poprawnie: 169/306 [55%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wśród 10 książek są książki A i B.

Na ile sposobów można ustawić te książki na półce w taki sposób, aby książki A i B stały obok siebie?

Odpowiedzi:
A. 18\cdot 64 B. 18\cdot 8!
C. 81\cdot 8! D. 90\cdot 8!
Zadanie 15.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 9/22 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \sqrt{3}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm