Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11302 ⋅ Poprawnie: 125/230 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pierwszy znak 5 znakowego kodu należy do zbioru A=\{1,2,3,...,7\}, a znak ostatni do zbioru B=\{1,2,3,...,4\}.

Ile różnych takich kodów można utworzyć, jeśli każdy znak kodu należy do zbioru A\cup B i znaki skrajne są różne?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11301 ⋅ Poprawnie: 263/432 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie czterocyfrowej cyfra setek jest o 2 większa od cyfry jedności.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 256/386 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 9\cdot 1 B. 9\cdot 8\cdot 7\cdot 1
C. 9\cdot 9\cdot 8\cdot 1 D. 9\cdot 10\cdot 10\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11286 ⋅ Poprawnie: 21/41 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Cyfry liczby naturalnej czterocyfrowej abcd spełniają warunki: d-a=3 oraz a \lessdot b \lessdot c \lessdot d.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 89/174 [51%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest cyfrą nieparzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 73/94 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 5615 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-12048 ⋅ Poprawnie: 120/160 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych parzystych, w których cyfra 7 występuje dokładnie jeden raz, jest:
Odpowiedzi:
A. 85 B. 100
C. 70 D. 105
E. 75 F. 90
Zadanie 8.  1 pkt ⋅ Numer: pp-11292 ⋅ Poprawnie: 161/249 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Na przyjęcie urodzinowe przyszło n osób i każda z tych osób przywitała się z każdym z pozostałych gości.

Ile było wszystkich powitań?

Dane
n=20
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 107/146 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 53/71 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Istnieje \frac{13!}{13} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 107/140 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na zebranie zarządu spółki przyszło 10 akcjonariuszy i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami spotkania.

Ile było wszystkich powitań.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » W liczbie składającej się z k=5 cyfr, iloczyn wszystkich cyfr jest równy 42.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 68/128 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f\} ustawiono w ciąg w taki sposób, że litery a i f stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 13/30 [43%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Pewne słowo k=5 literowe zawiera dwie różne samogłoski i p=3 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11275 ⋅ Poprawnie: 129/190 [67%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
« Po dodaniu do siebie wszystkich cyfr występujących w liczbie składającej się z czterech cyfr otrzymano sumę równą 3.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm