Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 59/73 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 14 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 982/1114 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wszystkich liczb naturalnych 9-ciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 1 i 6 (np. 16\ 061), jest:
Odpowiedzi:
A. 2\cdot 3^9 B. 3^9
C. 2\cdot 8^3 D. 2\cdot 3^8
Zadanie 3.  1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 130/166 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 3645 B. 3600
C. 9000 D. 3024
E. 2240 F. 2520
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 94/118 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 102/160 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6,7,8,9\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 81/104 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 8166 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11295 ⋅ Poprawnie: 132/209 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W zapisie liczby trzycyfrowej występuje dokładnie jedna cyfra 9 i dokładnie jedna cyfra 0.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11255 ⋅ Poprawnie: 54/83 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczba 6 cyfrowa n spełnia nierówność n > 3\cdot 10^5 i zawiera tylko cyfry ze zbioru \{1,2,3\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 506/572 [88%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrfowych parzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 5, 6 jest:
Odpowiedzi:
A. 96 B. 89
C. 81 D. 77
E. 100 F. 79
Zadanie 10.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 60/79 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Istnieje \frac{30!}{30} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11263 ⋅ Poprawnie: 92/200 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zamawiając obiad mamy do wyboru 12 różnych surówek, 3 rodzaje kompotu i 3 różne sosy.

Na ile sposobów możemy wybrać składniki jeśli wybierami dwie surówki, jeden kompot i jeden sos?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » W liczbie składającej się z k=9 cyfr, iloczyn wszystkich cyfr jest równy 42.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 71/132 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f,g,h\} ustawiono w ciąg w taki sposób, że litery a i d stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11262 ⋅ Poprawnie: 91/137 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Pewne słowo k=15 literowe zawiera n=2 liter "A", a pozostałe litery są inne niż "A" i są różne.

Ile słów 15 literowych można utworzyć przestawiając litery w tym słowie?

Odpowiedzi:
A. \frac{2\cdot 15!}{2} B. \frac{15!}{6}
C. \frac{15!}{2!} D. 13!
Zadanie 15.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 13/33 [39%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \frac{\sqrt{3}}{2}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm