Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 29/44 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 6 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 598/761 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wszystkich liczb naturalnych 5-ciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 2 i 4 (np. 24\ 042), jest:
Odpowiedzi:
A. 2\cdot 3^4 B. 2\cdot 3^5
C. 2\cdot 4^3 D. 3^5
Zadanie 3.  1 pkt ⋅ Numer: pp-11826 ⋅ Poprawnie: 554/696 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich liczb naturalnych 6-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5 B. 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5
C. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10 D. 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 78/99 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 1,2,3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11280 ⋅ Poprawnie: 67/201 [33%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Iloczyn cyfr liczby trzycyfrowej jest równy 0, a cyfra jedności tej liczby jest nie większa niż 5.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 70/91 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 5609 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11514 ⋅ Poprawnie: 187/820 [22%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Czterocyfrowa liczba całkowita dodatnia zapisana jest za pomocą różnych cyfr, a jej cyfra jedności należy do zbioru \{0,3,4,6,9\}.

Ile jest takich liczb:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 301/404 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=36
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 104/142 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 74/153 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj zapakował 5 różnych prezentów do 5 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11263 ⋅ Poprawnie: 84/187 [44%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zamawiając obiad mamy do wyboru 8 różnych surówek, 3 rodzaje kompotu i 2 różne sosy.

Na ile sposobów możemy wybrać składniki jeśli wybierami dwie surówki, jeden kompot i jeden sos?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 20/116 [17%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Święty Mikołaj spośród 10 różnych prezentów wybrał 9 prezentów i zapakował je do 9 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 9^{10} B. 10!
C. 9\cdot 9! D. 10^2\cdot 10!
Zadanie 13.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 66/125 [52%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f\} ustawiono w ciąg w taki sposób, że litery d i f stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 8/26 [30%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od 1 do 6, w taki sposób, że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.

Ile istnieje sposobów takiego usadzenia dzieci przy stole?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11802 ⋅ Poprawnie: 601/798 [75%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej 3 jest
Odpowiedzi:
A. 10 B. 5
C. 4 D. 16
E. 8 F. 6


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm