Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 97/236 [41%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na prostej k zaznaczono m=8 różnych punktów, zaś na innej prostej równoległej do prostej k zaznaczono n=3 różnych punktów.

Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich wierzchołkami?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 143/350 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest o 6 większa od cyfry tysięcy.

Ile jest takich liczb?

Odpowiedź:
ilosc\ liczb= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 337/453 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych o różnych cyfrach i podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 10\cdot 9\cdot 1 B. 9\cdot 9\cdot 8\cdot 1
C. 8\cdot 9\cdot 9\cdot 1 D. 8\cdot 8\cdot 7\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 90/114 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 113/204 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest cyfrą nieparzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 79/102 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 8245 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11514 ⋅ Poprawnie: 194/832 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Czterocyfrowa liczba całkowita dodatnia zapisana jest za pomocą różnych cyfr, a jej cyfra jedności należy do zbioru \{0,3,6,8,9\}.

Ile jest takich liczb:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 199/302 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Na ile sposobów k=6 osób może usiąść na n=8 krzesłach?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 146/176 [82%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4,5,6,7,8\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 56/74 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Istnieje \frac{30!}{30} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 109/142 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na zebranie zarządu spółki przyszło 19 akcjonariuszy i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami spotkania.

Ile było wszystkich powitań.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 35/64 [54%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » W liczbie składającej się z k=9 cyfr, iloczyn wszystkich cyfr jest równy 42.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11271 ⋅ Poprawnie: 19/49 [38%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » W liczbie składającej się z k=5 cyfr, iloczyn wszystkich cyfr jest równy 105.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 14/32 [43%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Pewne słowo k=9 literowe zawiera dwie różne samogłoski i p=7 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 88/103 [85%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 9\cdot 5\cdot 10^3 B. 9\cdot 2\cdot 10^3
C. 4\cdot 10^5 D. 5\cdot 10^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm