Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11303  
Podpunkt 1.1 (1 pkt)
 » W liczbie naturalnej składającej sie z 9 cyfr każde dwie sąsiadujące ze sobą cyfry są inne.

Ile jest wszystkich takich liczb?

Odpowiedzi:
A. 10\cdot 9^{8} B. 100\cdot 9^{7}
C. 9! D. 9^{9}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11777  
Podpunkt 2.1 (1 pkt)
 Wszystkich liczb naturalnych 6-ciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 3 i 5 (np. 35\ 053), jest:
Odpowiedzi:
A. 3^6 B. 2\cdot 3^6
C. 2\cdot 3^5 D. 2\cdot 5^3
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11873  
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 10\cdot 10\cdot 1 B. 9\cdot 9\cdot 9\cdot 1
C. 9\cdot 8\cdot 7\cdot 1 D. 9\cdot 9\cdot 8\cdot 1
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11286  
Podpunkt 4.1 (1 pkt)
Cyfry liczby naturalnej czterocyfrowej abcd spełniają warunki: d-a=3 oraz a \lessdot b \lessdot c \lessdot d.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11281  
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 10\mid n i 25\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11288  
Podpunkt 6.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 5958 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11902  
Podpunkt 7.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=6-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 16 B. 10
C. 13 D. 11
E. 14 F. 12
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11255  
Podpunkt 8.1 (1 pkt)
 Liczba 4 cyfrowa n spełnia nierówność n > 6\cdot 10^3 i zawiera tylko cyfry ze zbioru \{1,2,6\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11291  
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11266  
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj zapakował 6 różnych prezentów do 6 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11265  
Podpunkt 11.1 (1 pkt)
 Na 5 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,5\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11267  
Podpunkt 12.1 (1 pkt)
 Święty Mikołaj spośród 12 różnych prezentów wybrał 11 prezentów i zapakował je do 11 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 11\cdot 11! B. 12!
C. 11^{12} D. 12^2\cdot 12!
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11273  
Podpunkt 13.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f\} ustawiono w ciąg w taki sposób, że litery d i e stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11294  
Podpunkt 14.1 (1 pkt)
 Pewne słowo k=5 literowe zawiera dwie różne samogłoski i p=3 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11298  
Podpunkt 15.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \sqrt{3}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm