Podgląd testu : lo2@sp-20-kombinatoryka-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11303 ⋅ Poprawnie: 112/119 [94%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» W liczbie naturalnej składającej sie z
13 cyfr każde dwie sąsiadujące
ze sobą cyfry są inne.
Ile jest wszystkich takich liczb?
Odpowiedzi:
A. 9^{13}
B. 10\cdot 9^{12}
C. 100\cdot 9^{11}
D. 9!
Zadanie 2. 1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 985/1118 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wszystkich liczb naturalnych
7 -ciocyfrowych, w których zapisie
dziesiętnym występują tylko cyfry
0 ,
4
i
9 (np.
49\ 094 ), jest:
Odpowiedzi:
A. 2\cdot 6^3
B. 2\cdot 3^7
C. 3^7
D. 2\cdot 3^6
Zadanie 3. 1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 443/577 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez
5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 1
B. 9\cdot 8\cdot 7\cdot 1
C. 9\cdot 9\cdot 9\cdot 1
D. 9\cdot 10\cdot 10\cdot 1
Zadanie 4. 1 pkt ⋅ Numer: pp-11278 ⋅ Poprawnie: 213/426 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Z cyfr należących do zbioru
\{0,1,2,3,4,5,6,7\} utworzono liczbę trzycyfrową podzielną przez
5 , której wszystkie cyfry są różne.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 35/71 [49%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
O liczbie trzycyfrowej
n wiadomo, że
26\mid n i
169\nmid n .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11289 ⋅ Poprawnie: 152/223 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczba trzycyfrowa utworzona jest wyłącznie z cyfr należących do zbioru
\{3,4,8\} i jest nie większa niż
590 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11295 ⋅ Poprawnie: 134/211 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W zapisie liczby trzycyfrowej występuje dokładnie jedna cyfra
5 i dokładnie jedna cyfra
0 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11292 ⋅ Poprawnie: 182/273 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na przyjęcie urodzinowe przyszło
n osób i każda z tych osób
przywitała się z każdym z pozostałych gości.
Ile było wszystkich powitań?
Dane
n=28
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11283 ⋅ Poprawnie: 52/63 [82%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Z miejscowości
A do miejscowości
B można dojechać
11 różnymi
dwukierunkowymi drogami.
Na ile sposobów można odbyć podróż z miejscowości
A do miejscowości B
i z powrotem?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11999 ⋅ Poprawnie: 663/770 [86%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozważamy wszystkie kody
n=6 cyfrowe utworzone tylko z cyfr
1 ,
3 ,
4 ,
6 ,
8 ,
9 , przy czym w każdym kodzie każda z tych cyfr występuje dokładnie
jeden raz.
Liczba wszystkich takich kodów jest równa:
Odpowiedzi:
A. 120
B. 744
C. 768
D. 732
E. 720
F. 5040
Zadanie 11. 1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 111/145 [76%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na zebranie zarządu spółki przyszło
13 akcjonariuszy
i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami
spotkania.
Ile było wszystkich powitań.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 55/117 [47%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez
p i nie większych niż
d ?
Dane
p=4
d=2026
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11300 ⋅ Poprawnie: 77/119 [64%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Numer katalogowy książki składa się z
5 wielkich liter i
9 cyfr.
Pierwsza z tych cyfr jest cyfrą kontrolną i jest wyznaczana jednoznacznie
na podstawie pozostałych siedmiu znaków.
Ile numerów katalogowych można
utworzyć jeśli alfabet ma 26 liter?
Odpowiedzi:
A. 26^{5}\cdot 10^{9}
B. 26^{5}\cdot 10^{10}
C. 26\cdot 25\cdot 24\cdot 10^{10}
D. 26\cdot 25\cdot 24\cdot 10^{9}
Zadanie 14. 1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Pewne słowo
k=6 literowe zawiera dwie różne samogłoski
i
p=4 różnych spółgłosek.
Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11275 ⋅ Poprawnie: 133/195 [68%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po dodaniu do siebie wszystkich cyfr występujących w liczbie składającej się
z czterech cyfr otrzymano sumę równą
3 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż