Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 99/238 [41%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na prostej k zaznaczono m=8 różnych punktów, zaś na innej prostej równoległej do prostej k zaznaczono n=2 różnych punktów.

Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich wierzchołkami?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 910/1038 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wszystkich liczb naturalnych 9-ciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 1 i 6 (np. 16\ 061), jest:
Odpowiedzi:
A. 2\cdot 3^9 B. 2\cdot 3^8
C. 2\cdot 8^3 D. 3^9
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 252/361 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5-1 B. 4\cdot 5\cdot 5
C. 2\cdot 5\cdot 5 D. 2\cdot 10\cdot 10-1
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 91/115 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 99/157 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6,7,8,9\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11290 ⋅ Poprawnie: 29/45 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba naturalna dwucyfrowa dzieli się przez jakąkolwiek liczbę ze zbioru \{7,8\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11514 ⋅ Poprawnie: 195/833 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Czterocyfrowa liczba całkowita dodatnia zapisana jest za pomocą różnych cyfr, a jej cyfra jedności należy do zbioru \{0,3,7,8,9\}.

Ile jest takich liczb:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 81/138 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przy sklepie, po dwóch stronach ulicy jest po k=20 miejsc parkingowych.

Na ile sposobów można zaparkować na nich sześć samochodów?

Odpowiedzi:
A. 40! B. 35\cdot 36\cdot 37\cdot ...\cdot 40
C. 40^2 D. 20^2
Zadanie 9.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 152/178 [85%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4,5,6,7,8\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 78/159 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj zapakował 9 różnych prezentów do 9 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 110/143 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na zebranie zarządu spółki przyszło 19 akcjonariuszy i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami spotkania.

Ile było wszystkich powitań.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 164/235 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na parkingu ustawiono 13 opli i 3 fordów. Wszystkie ople stoją przed fordami.

Takich ustawień samochodów jest:

Odpowiedzi:
A. 13\cdot 3 B. 2^{13}\cdot 2^{3}
C. (13+3)! D. 13!\cdot 3!
Zadanie 13.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 36 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 12/34 [35%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od 1 do 6, w taki sposób, że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.

Ile istnieje sposobów takiego usadzenia dzieci przy stole?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11802 ⋅ Poprawnie: 815/999 [81%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej 3 jest
Odpowiedzi:
A. 12 B. 6
C. 4 D. 16
E. 8 F. 10


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm