Dana jest funkcja
f(x)=
\begin{cases}
\frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\
1\text{, dla } x=1 \\
3\text{, dla } x=2
\end{cases}
.
Zbadaj ciągłość tej funkcji w punktach x=1 i
x=2.
Jeśli f jest ciągła w obu punktach wpisz
2, jeśli w jednym wpisz 1,
jeśli w żadnym wpisz 0.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.2 pkt ⋅ Numer: pr-20847 ⋅ Poprawnie: 0/0
Wielomian W(x) stopnia trzeciego ma dokładnie dwa
pierwiastki -2 i 1, przy
czym pierwiastek 1 ma krotność
2. Wiedząc, że
\lim_{x\to +\infty}W(x)=+\infty oraz
W'(-2)=18 wyznacz wzór tego wielomianu w postaci
ogólnej.
Podaj współczynnik wielomianu stojący przy niewiadomej w najwyższej potędze.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj wyraz wolny wielomianu (a_0).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30246 ⋅ Poprawnie: 0/0