Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10341 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 4^{+}} \frac{x^2-16}{x^2x-16} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10345 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(3x^4+\frac{1}{6}x^3+3x+5\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-4x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. jest rosnąca w przedziale (-\infty, 0\rangle B. ma jedno ekstremum lokalne
C. ma minimum lokalne większe od maksimum lokalnego D. ma maksimum lokalne większe od minimum lokalnego
Zadanie 4.  2 pkt ⋅ Numer: pr-20840 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
« Wyznacz parametr a, jeśli wiadomo, że \lim_{x\to 1} \left(\frac{a}{1-x}-\frac{1}{x^2-1}\right)=\frac{1}{4} .

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20849 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1.6 pkt)
 « Rozwiąż równanie f(x)=f'(x), gdzie f(x)=\frac{x+5}{x+1}.

Podaj największe z rozwiązań całkowitych tego równania.

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Podpunkt 5.2 (0.4 pkt)
 Ile rozwiązań ma to równanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20855 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz równanie stycznej do wykresu funkcji określonej wzorem f(x)=2x^5+x-\frac{25}{4}, nachylonej do osi układu Ox pod kątem \frac{\pi}{4} i zapisz równanie tej stycznej w postaci y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20862 ⋅ Poprawnie: 19/27 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz przedziały monotoniczności funkcji f(x)=\frac{x-a}{(x-b)^2} .

Podaj lewy koniec przedziału, w którym funkcja ta rośnie.

Dane
a=-2
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec przedziału, w którym funkcja ta rośnie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30806 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Punkt M nalezy do pierwszej ćwiartki układu współrzednych i do hiperboli o równaniu f(x)=\frac{1}{x}. Styczna do tej hiperboli w punkcie M przecina osie układu Oy i Ox w punktach odpowiednio A i B.

Oblicz \frac{|AM|}{|MB|}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Oblicz pole powierzchni trójkąta AOB.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30249 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Punkt K=(1,9) należy do prostej, która jest wykresem funkcji malejącej. Prosta ta odcina na osiach układu dwa odcinki, których suma długości jest najmniejsza możliwa. Wyznacz równanie tej prostej w postaci y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm