Dana jest funkcja
f(x)=
\begin{cases}
\frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\
1\text{, dla } x=1 \\
3\text{, dla } x=2
\end{cases}
.
Zbadaj ciągłość tej funkcji w punktach x=1 i
x=2.
Jeśli f jest ciągła w obu punktach wpisz
2, jeśli w jednym wpisz 1,
jeśli w żadnym wpisz 0.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.2 pkt ⋅ Numer: pr-20849 ⋅ Poprawnie: 0/0
» Dana jest funkcja fokreślona wzorem
f(x)=\frac{x+3}{x^2+8x+11} dla każdego
x\in\mathbb{R}. Wyznacz równanie stycznej
do wykresu funkcji f w punkcie
M=(-3,0).
Równanie to zapisz w postaci kierunkowej y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20869 ⋅ Poprawnie: 0/0
Dana jest funkcja g(m)=x_1\cdot x_2, gdzie
x_1 i x_2 są różnymi
pierwiastkami równania (m-1)x^2+(m-2)x+m^2-4m+4=0.
Wyznacz te wartości parametru m, dla których funkcja
g osiąga maksimum lokalne.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Ile wynosi to maksimum?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30244 ⋅ Poprawnie: 5/18 [27%]