Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10340 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 6^{-}} \frac{x-1}{(x-6)(3-x)} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10347 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3}{x^2-81}-\frac{x^2+1}{x+9}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^2-14x+33 w punkcie o współrzędnych (x_0,y_0) jest równoległa do prostej o równaniu y=2x-9.

Wyznacz odciętą x_0.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
Oblicz granicę \lim_{x\to 2} \frac{x^3-x^2-x-2}{x^2-x-2} .

Podaj tę granicę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20508 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{x-8}{x^2+6}. Oblicz f'\left(\frac{1}{2}\right).

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20861 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz równanie stycznej do wykresu funkcji f(x)=\frac{5x-23}{x+1}+2 w punkcie x_0=-1 i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20502 ⋅ Poprawnie: 12/27 [44%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Dana jest funkcja f(x)=4x^3+ax^2+x. Wyznacz maksymalne możliwe a, dla którego funkcja ta nie ma ekstremum lokalnego.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 8.  4 pkt ⋅ Numer: pr-30811 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dana jest funkcja g(m)=x_1\cdot x_2, gdzie x_1 i x_2 są różnymi pierwiastkami równania (m-1)x^2+(m-2)x+m^2-4m+4=0. Wyznacz te wartości parametru m, dla których funkcja g osiąga maksimum lokalne.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Ile wynosi to maksimum?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30248 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
W półkole wpisano prostokąt o największym możliwym polu powierzchni.

Oblicz cosinus kąta rozwartego jaki tworzą przekątne tego prostokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm