Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{-3-x^2}{x^3+3x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10345 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-4x^6+\frac{1}{6}x^5+5x-4\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^2-18x+60 w punkcie o współrzędnych (x_0,y_0) jest równoległa do prostej o równaniu y=2x-18.

Wyznacz odciętą x_0.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20846 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja f(x)= \begin{cases} \frac{1}{ax} \text{, dla } x\in(-\infty,-1)\cup (4,+\infty) \\ ax+b\text{, dla } x\in\langle -1,4\rangle \end{cases} , która jest ciągła w \mathbb{R}.

Podaj największą możliwą wartość a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj najmniejszą możliwą wartość b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 15/20 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pochodna funkcji określonej wzorem f(x)=(x^2+16)(x^2+6x) jest wielomianem postaci W(x)=ax^3+bx^2+cx+d.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Oblicz f'(-1).
Odpowiedź:
f'(-1)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20855 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz równanie stycznej do wykresu funkcji określonej wzorem f(x)=2x^5+x-\frac{25}{4}, nachylonej do osi układu Ox pod kątem \frac{\pi}{4} i zapisz równanie tej stycznej w postaci y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20871 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wyznacz zbiór wartości funkcji f(x)=\frac{1}{3\cos x+5}.

Podaj lewy koniec wyznaczonego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec wyznaczonego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30244 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
Liczby x i y spełniają warunek y=x+1, a wyrażenie \frac{y^2-2x+1}{x^2+2y} jest największe możliwe.

Jaką wartość ma to wyrażenie?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Dla jakiej wartości x wartość wyrażenia jest maksymalna?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm