Podgląd testu : lo2@sp-analiza-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10341 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oblicz granicę
\lim_{x\to -4^{+}} \frac{x^2-16}{x^2-5x+4}
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10347 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz granicę
\lim_{x\to +\infty} \left[\frac{x^3}{x^2-64}-\frac{x^2+1}{x+8}\right]
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 3.1 (1 pkt)
Styczna do wykresu funkcji określonej wzorem
f(x)=x^2-10x+4
w punkcie o współrzędnych
(x_0,y_0) jest równoległa do prostej
o równaniu
y=2x-10 .
Wyznacz odciętą x_0 .
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-20846 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
\frac{1}{ax} \text{, dla } x\in(-\infty,-1)\cup (4,+\infty) \\
ax+b\text{, dla } x\in\langle -1,4\rangle
\end{cases}
,
która jest ciągła w
\mathbb{R} .
Podaj największą możliwą wartość a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj najmniejszą możliwą wartość b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 2 pkt ⋅ Numer: pr-20506 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (2 pkt)
Dana jest funkcja
f(x)=\frac{2x^4+15}{6-x^2} .
Oblicz
f'(1) .
Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia
dziesiętnego otrzymanego wyniku.
Odpowiedź:
Wpisz odpowiedź:
(wpisz odpowiedź tekstową)
Zadanie 6. 2 pkt ⋅ Numer: pr-20855 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Wyznacz równanie stycznej do wykresu funkcji określonej wzorem
f(x)=2x^5+x-\frac{15}{2} , nachylonej do osi układu
Ox pod kątem
\frac{\pi}{4} i
zapisz równanie tej stycznej w postaci
y=ax+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20871 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz zbiór wartości funkcji
f(x)=\frac{1}{3\cos x+5} .
Podaj lewy koniec wyznaczonego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec wyznaczonego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest funkcja
f(x)=-x^2+|x| . Wyznacz ekstrema
tej funkcji.
Podaj wartość maksimum lokalnego.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 6 pkt ⋅ Numer: pr-30359 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (4 pkt)
» Największy z okręgów na rysunku ma promień długości
36 , a punkty
O ,
O_1 i
O_2 nie
leżą na jednej prostej:
Wyraź pole powierzchni zielonego trójkąta jako funkcję
promienia r
(wykorzystaj wzór P=\sqrt{p(p-a)(p-b)(p-c)} ).
Wyznacz długość promienia r , przy której pole
zielonego trójkąta jest największe.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile jest równe to największe pole?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż