Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10342  
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 5^{-}} \frac{-4x}{x-5} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10347  
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3}{x^2-1}-\frac{x^2+1}{x+1}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10353  
Podpunkt 3.1 (1 pkt)
« Dana jest funkcja h(x)= \begin{cases} m-|x-3|\text{, dla }x \lessdot -1\\ \frac{1}{2}(x^2+2mx-1)\text{, dla }x\geqslant -1 \end{cases} , gdzie m jest parametrem. Funkcja h jest ciągła w punkcie x=-1.

Wynika z tego, że m jest liczbą:

Odpowiedzi:
A. złożoną B. należącą do przedziału (0,2)
C. pierwszą D. całkowitą ujemną
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20503  
Podpunkt 4.1 (2 pkt)
» Oblicz granicę \lim_{x\to \sqrt{5}} \frac{x^3+x^2-5x-5}{10x^2-50} .

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20849  
Podpunkt 5.1 (1 pkt)
« Rozwiąż równanie f(x)=f'(x), gdzie f(x)=\frac{x+1}{x^2+1}.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
Ile rozwiązań ma to równanie?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20852  
Podpunkt 6.1 (1 pkt)
Wyznacz równanie stycznej do wykresu funkcji f(x)=\frac{-4x}{x^2+4} w punkcie x_0=-2 i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20870  
Podpunkt 7.1 (1 pkt)
Wyznacz ekstrema lokalne funkcji f(x)=(x+2)^2(x-4).

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Ile rozwiązań ma równanie f(x)=-30?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30803  
Podpunkt 8.1 (4 pkt)
Wyznacz wartość parametru m, dla której prosta y=-4x jest styczną do wykresu funkcji f(x)=x^4+m.

Podaj m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30245  
Podpunkt 9.1 (4 pkt)
Jeden z boków kwadratu o wierzchołkach A i B zawiera się w prostej y=\frac{1}{2}x, a wierzchołek C należy do wykresu funkcji y=-\frac{8}{x}.

Wiedząc, że kwadrat ten ma najmniejsze możliwe pole powierzchni, oblicz długość jego przekątnej.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm