Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -1^{-}} \frac{x}{x+1} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10345 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-6x^4+x^3-x-1\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^2-14x+26 w punkcie o współrzędnych (x_0,y_0) jest równoległa do prostej o równaniu y=2x-16.

Wyznacz odciętą x_0.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20840 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
« Wyznacz parametr a, jeśli wiadomo, że \lim_{x\to 1} \left(\frac{a}{1-x}-\frac{1}{x^2-1}\right)=\frac{1}{4} .

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20508 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{x-8}{x^2+6}. Oblicz f'\left(\frac{1}{2}\right).

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20857 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja fokreślona wzorem f(x)=\frac{x-3}{x^2-4x+11} dla każdego x\in\mathbb{R}. Wyznacz równanie stycznej do wykresu funkcji f w punkcie M=(3,0). Równanie to zapisz w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz ekstrema lokalne funkcji f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3 .

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj wartość x_{max}+f(x_{max}), gdzie x_{max} jest punktem, w którym funkcja osiąga maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30806 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Punkt M nalezy do pierwszej ćwiartki układu współrzednych i do hiperboli o równaniu f(x)=\frac{1}{x}. Styczna do tej hiperboli w punkcie M przecina osie układu Oy i Ox w punktach odpowiednio A i B.

Oblicz \frac{|AM|}{|MB|}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Oblicz pole powierzchni trójkąta AOB.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30244 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Liczby x i y spełniają warunek y=x+1, a wyrażenie \frac{y^2-2x+1}{x^2+2y} jest największe możliwe.

Jaką wartość ma to wyrażenie?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Dla jakiej wartości x wartość wyrażenia jest maksymalna?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm