Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{2-x^2}{x^3-2x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10351 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to {x_0}^+} \frac{ax+b}{x^2+cx+d} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Dane
x_0=-7
a=3
b=-2
c=11
d=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
Która z poniższych funkcji nie ma ekstremum lokalnego:
Odpowiedzi:
A. f(x)=3x^3+2x^2 B. f(x)=\frac{1}{3}x^3+2x
C. f(x)=(4x+1)^2 D. f(x)=4x^2+5x
Zadanie 4.  2 pkt ⋅ Numer: pr-20842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
Funkcja f(x)=\frac{x^2+ax+a}{x^2+5x+6} ma granicę właściwą w punkcie x_0=-3. Wyznacz miejsca zerowe tej funkcji.

Podaj najmniejsze z miejsc zerowych.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj wartość a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20508 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{x-8}{x^2+6}. Oblicz f'\left(\frac{1}{2}\right).

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20854 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 » Styczna do wykresu funkcji g(x)=\frac{3}{2}x^2-7 tworzy z osią Ox kąt o mierze 150^{\circ}. Wyznacz równanie tej stycznej i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1.5 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20871 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wyznacz zbiór wartości funkcji f(x)=\frac{1}{3\cos x+5}.

Podaj lewy koniec wyznaczonego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec wyznaczonego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Dana jest funkcja f(x)=-x^2+|x|. Wyznacz ekstrema tej funkcji.

Podaj wartość maksimum lokalnego.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  6 pkt ⋅ Numer: pr-30355 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Na okręgu opisano trapez równoramienny o podstawach a i b (a > b) i wysokości h, w którym a+h=k. Wyznacz przedział, do którego może należeć dłuższa podstawa a.

Podaj lewy koniec tego przedziału.

Dane
k=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Obwód tego trapezu w zależności od długości dłuższej podstawy a wyraża się wzorem O=\frac{W(a)}{a}, gdzie W(a) jest wielomianem.

Podaj największy współczynnik tego wielomianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
 Podaj długość dłuższej podstawy a tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.5 (1 pkt)
 Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm