» Dana jest funkcja
f(x)=
\begin{cases}
\frac{1}{ax} \text{, dla } x\in(-\infty,-1)\cup (4,+\infty) \\
ax+b\text{, dla } x\in\langle -1,4\rangle
\end{cases}
,
która jest ciągła w \mathbb{R}.
Podaj największą możliwą wartość a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj najmniejszą możliwą wartość b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.2 pkt ⋅ Numer: pr-20510 ⋅ Poprawnie: 0/0
» Styczna do wykresu funkcji
g(x)=\frac{3}{2}x^2+2 tworzy z osią
Ox kąt o mierze
150^{\circ}. Wyznacz równanie tej stycznej i zapisz
je w postaci y=ax+b.
Podaj a.
Odpowiedź:
a=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1.5 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20869 ⋅ Poprawnie: 0/0
« Na okręgu opisano trapez równoramienny o podstawach
a i b
(a > b) i wysokości h,
w którym a+h=k. Wyznacz przedział, do którego
może należeć dłuższa podstawa a.
Podaj lewy koniec tego przedziału.
Dane
k=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Obwód tego trapezu w zależności od długości dłuższej podstawy
a wyraża się wzorem
O=\frac{W(a)}{a}, gdzie
W(a) jest wielomianem.
Podaj największy współczynnik tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
Podaj długość dłuższej podstawy a tego z
trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.5 (1 pkt)
Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat