Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 5^{-}} \frac{-2x}{x-5} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-2x^5+5x^3-3x-1\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-7x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma jedno ekstremum lokalne B. ma maksimum lokalne większe od minimum lokalnego
C. jest malejąca w przedziale \left\langle 14,+\infty\right) D. jest rosnąca w przedziale (-\infty, 0\rangle
Zadanie 4.  2 pkt ⋅ Numer: pr-20840 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
« Wyznacz parametr a, jeśli wiadomo, że \lim_{x\to 1} \left(\frac{a}{1-x}-\frac{1}{x^2-1}\right)=\frac{1}{4} .

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20507 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
« Dana jest funkcja f(x)=\frac{x^2+3x-1}{2x+3}. Oblicz f'(0).

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20854 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 » Styczna do wykresu funkcji g(x)=\frac{3}{2}x^2-4 tworzy z osią Ox kąt o mierze 150^{\circ}. Wyznacz równanie tej stycznej i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1.5 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20511 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Styczna do wykresu paraboli określonej równaniem f(x)=-x^2+574 w punkcie P=(4,558) zawiera punkt (0,m).

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pr-30809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30244 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Liczby x i y spełniają warunek y=x+1, a wyrażenie \frac{y^2-2x+1}{x^2+2y} jest największe możliwe.

Jaką wartość ma to wyrażenie?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Dla jakiej wartości x wartość wyrażenia jest maksymalna?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm