Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{1-x^2}{x^3-x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10346 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3+1}{x^2-x}+\frac{x^4}{x^2+x}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10353 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Dana jest funkcja h(x)= \begin{cases} m-|x-3|\text{, dla }x \lessdot -1\\ \frac{1}{2}(x^2+2mx-1)\text{, dla }x\geqslant -1 \end{cases} , gdzie m jest parametrem. Funkcja h jest ciągła w punkcie x=-1.

Wynika z tego, że m jest liczbą:

Odpowiedzi:
A. pierwszą B. złożoną
C. należącą do przedziału (0,2) D. całkowitą ujemną
Zadanie 4.  2 pkt ⋅ Numer: pr-20846 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja f(x)= \begin{cases} \frac{1}{ax} \text{, dla } x\in(-\infty,-1)\cup (4,+\infty) \\ ax+b\text{, dla } x\in\langle -1,4\rangle \end{cases} , która jest ciągła w \mathbb{R}.

Podaj największą możliwą wartość a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj najmniejszą możliwą wartość b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20510 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
» Wyznacz największe miejsce zerowe pochodnej funkcji g(x)=x^4-34x^2+20.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20858 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja określona wzorem g(x)=x^4+2. Prosta y=ax+b jest styczną do wykresu funkcji g i jest równoległa do prostej o równaniu y=4x-1.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20864 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wyznacz przedziały monotoniczności funkcji f(x)=\frac{x^4}{(x-1)^2}.

Podaj sumę prawych końców tych wszystkich przedziałów, w których funkcja ta jest malejąca.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2+3x+3 i g(x)=\frac{1}{2}x^2+x+2.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30248 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
W półkole wpisano prostokąt o największym możliwym polu powierzchni.

Oblicz cosinus kąta rozwartego jaki tworzą przekątne tego prostokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm