Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 2^{-}} \frac{3x}{x-2} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10346 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3+1}{x^2-x}+\frac{3x^4}{x^2+x}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^2-4x-17 w punkcie o współrzędnych (x_0,y_0) jest równoległa do prostej o równaniu y=2x-4.

Wyznacz odciętą x_0.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20846 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja f(x)= \begin{cases} \frac{1}{ax} \text{, dla } x\in(-\infty,-1)\cup (4,+\infty) \\ ax+b\text{, dla } x\in\langle -1,4\rangle \end{cases} , która jest ciągła w \mathbb{R}.

Podaj największą możliwą wartość a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj najmniejszą możliwą wartość b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pochodna funkcji określonej wzorem f(x)=(x^2+4)(x^2-4x) jest wielomianem postaci W(x)=ax^3+bx^2+cx+d.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Oblicz f'(-1).
Odpowiedź:
f'(-1)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20851 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Styczna do paraboli o równaniu y=\sqrt{3}x^2 +4\sqrt{3}x -5+4\sqrt{3} w punkcie P=(x_0,y_0) jest nachylona do osi Ox układu współrzędnych pod kątem o mierze 30^{\circ}.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz y_0.
Odpowiedź:
y_0= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20868 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Ile liczb całkowitych dwucyfrowych dodatnich spełnia nierówność x^4-x^2-2x+3 > 0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2-3x+3 i g(x)=\frac{1}{2}x^2-2x+\frac{7}{2}.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30250 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Dany jest ciąg arytmetyczny (a_n), w którym a_8=3 i a_{20}=27. Wyznacz największe możliwe n, dla którego S_n ma wartość najmniejszą.

Podaj n.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile istnieje takich wartości n?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm