Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -3^{-}} \frac{2x}{x+3} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10346 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3+1}{x^2-x}+\frac{3x^4}{x^2+x}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-12x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma minimum lokalne większe od maksimum lokalnego B. jest rosnąca w przedziale (-\infty, 0\rangle
C. ma jedno ekstremum lokalne D. ma maksimum lokalne większe od minimum lokalnego
Zadanie 4.  2 pkt ⋅ Numer: pr-20841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
Oblicz granicę \lim_{x\to 2} \frac{x^3-x^2-x-2}{x^2-x-2} .

Podaj tę granicę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 15/20 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pochodna funkcji określonej wzorem f(x)=(x^2+9)(x^2-5x) jest wielomianem postaci W(x)=ax^3+bx^2+cx+d.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Oblicz f'(-1).
Odpowiedź:
f'(-1)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20853 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz równanie stycznej do wykresu funkcji określonej wzorem f(x)=\frac{x^2+6x+11}{x^2+5x+8} w punkcie x_0=-2 i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20863 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wyznacz przedziały monotoniczności funkcji f(x)=x+\frac{9}{x}.

Podaj sumę prawych końców tych wszystkich przedziałów, w których funkcja ta jest malejąca.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2+7x+13 i g(x)=\frac{1}{2}x^2+3x+6.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30250 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Dany jest ciąg arytmetyczny (a_n), w którym a_8=3 i a_{20}=27. Wyznacz największe możliwe n, dla którego S_n ma wartość najmniejszą.

Podaj n.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile istnieje takich wartości n?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm