Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 4^{-}} \frac{-5x}{x-4} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10352 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to {x_0}^+} \frac{ax+b}{x^2+cx+d} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Dane
x_0=-6
a=-3
b=-18
c=2
d=-24
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-3x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma maksimum lokalne większe od minimum lokalnego B. ma jedno ekstremum lokalne
C. jest rosnąca w przedziale (-\infty, 0\rangle D. jest malejąca w przedziale \left\langle 6,+\infty\right)
Zadanie 4.  2 pkt ⋅ Numer: pr-20842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
Funkcja f(x)=\frac{x^2+ax+a}{x^2+5x+6} ma granicę właściwą w punkcie x_0=-3. Wyznacz miejsca zerowe tej funkcji.

Podaj najmniejsze z miejsc zerowych.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj wartość a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20505 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{x}{(x-1)^2}. Oblicz f'(-3).

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20856 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja fokreślona wzorem f(x)=x^3-14x^2+64x-95 dla każdego x\in\mathbb{R}. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y=4x. Równania stycznych zapisz w postaci kierunkowej y=ax+b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą możliwą wartość b.
Odpowiedź:
b_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20862 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz przedziały monotoniczności funkcji f(x)=\frac{x-a}{(x-b)^2} .

Podaj lewy koniec przedziału, w którym funkcja ta rośnie.

Dane
a=-2
b=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec przedziału, w którym funkcja ta rośnie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30808 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Wielomian W(x) stopnia trzeciego ma dokładnie dwa pierwiastki -2 i 1, przy czym pierwiastek 1 ma krotność 2. Wiedząc, że \lim_{x\to +\infty}W(x)=+\infty oraz W'(-2)=18 wyznacz wzór tego wielomianu w postaci ogólnej.

Podaj współczynnik wielomianu stojący przy niewiadomej w najwyższej potędze.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj wyraz wolny wielomianu (a_0).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  6 pkt ⋅ Numer: pr-30359 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
» Największy z okręgów na rysunku ma promień długości 36, a punkty O, O_1 i O_2 nie leżą na jednej prostej:

Wyraź pole powierzchni zielonego trójkąta jako funkcję promienia r (wykorzystaj wzór P=\sqrt{p(p-a)(p-b)(p-c)}).

Wyznacz długość promienia r, przy której pole zielonego trójkąta jest największe.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile jest równe to największe pole?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm