Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -1^{-}} \frac{x}{x+1} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10347 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3}{x^2-36}-\frac{x^2+1}{x+6}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
Która z poniższych funkcji nie ma ekstremum lokalnego:
Odpowiedzi:
A. f(x)=\frac{1}{3}x^3+2x B. f(x)=(4x+1)^2
C. f(x)=3x^3+2x^2 D. f(x)=4x^2+5x
Zadanie 4.  2 pkt ⋅ Numer: pr-20844 ⋅ Poprawnie: 17/21 [80%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
Dana jest funkcja f(x)= \begin{cases} \frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\ 1\text{, dla } x=1 \\ 3\text{, dla } x=2 \end{cases} .

Zbadaj ciągłość tej funkcji w punktach x=1 i x=2.

Jeśli f jest ciągła w obu punktach wpisz 2, jeśli w jednym wpisz 1, jeśli w żadnym wpisz 0.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 15/20 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pochodna funkcji określonej wzorem f(x)=(x^2+1)(x^2-4x) jest wielomianem postaci W(x)=ax^3+bx^2+cx+d.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Oblicz f'(-1).
Odpowiedź:
f'(-1)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20861 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz równanie stycznej do wykresu funkcji f(x)=\frac{5x-8}{x+4}-4 w punkcie x_0=2 i zapisz je w postaci y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20511 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Styczna do wykresu paraboli określonej równaniem f(x)=-x^2+573 w punkcie P=(4,557) zawiera punkt (0,m).

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pr-30807 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta x+y-\frac{1}{2}=0 jest styczną do wykresu funkcji g(x)=\frac{4}{3}x^3+2x^2+\log_{12\sqrt{12}}{(m-3)(m-7)} . Wyznacz m.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30243 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
« Koszt produkcji n niepodzielnych sztuk towaru wynosi 2n^2+33n+120. Ile należy wyprodukować sztuk tego towaru, aby koszt produkcji jednej sztuki był możliwie jak najmniejszy?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm