Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{-4-x^2}{x^3+4x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-3x^7-6x^5-5x-6\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-5x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma jedno ekstremum lokalne B. ma minimum lokalne większe od maksimum lokalnego
C. jest malejąca w przedziale \left\langle 10,+\infty\right) D. jest rosnąca w przedziale (-\infty, 0\rangle
Zadanie 4.  2 pkt ⋅ Numer: pr-20845 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja f(x)= \begin{cases} \frac{x^2+a}{x-2} \text{, dla } x\neq 2 \\ b\text{, dla } x=2 \end{cases} , która jest ciągła w punkcie x=2.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20847 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{-4x^2+256}{x^2-1}.

Oblicz f'(2).

Odpowiedź:
f'(2)=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20859 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu y=ax+b jest styczną do wykresu funkcji określonej wzorem f(x)=(x+3)^2-\frac{9}{2}. Punkt styczności ma współrzędne A=(0,y_0).

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20868 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Ile liczb całkowitych dwucyfrowych dodatnich spełnia nierówność x^4-x^2-2x+3 > 0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2+11x+31 i g(x)=\frac{1}{2}x^2+5x+14.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30251 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Trapez równoramienny ma przekątną długości 5\sqrt{6} i największe możliwe pole powierzchni.

Ile wynosi suma jego podstaw?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile wynosi to największe możliwe pole?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm