Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{-1-x^2}{x^3+x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10347 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3}{x^2-25}-\frac{x^2+1}{x+5}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10353 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Dana jest funkcja h(x)= \begin{cases} m-|x-3|\text{, dla }x \lessdot -1\\ \frac{1}{2}(x^2+2mx-1)\text{, dla }x\geqslant -1 \end{cases} , gdzie m jest parametrem. Funkcja h jest ciągła w punkcie x=-1.

Wynika z tego, że m jest liczbą:

Odpowiedzi:
A. całkowitą ujemną B. złożoną
C. pierwszą D. należącą do przedziału (0,2)
Zadanie 4.  2 pkt ⋅ Numer: pr-20844 ⋅ Poprawnie: 16/20 [80%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
Dana jest funkcja f(x)= \begin{cases} \frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\ 1\text{, dla } x=1 \\ 3\text{, dla } x=2 \end{cases} .

Zbadaj ciągłość tej funkcji w punktach x=1 i x=2.

Jeśli f jest ciągła w obu punktach wpisz 2, jeśli w jednym wpisz 1, jeśli w żadnym wpisz 0.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20506 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{2x^4+15}{6-x^2}. Oblicz f'(1).

Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20856 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja fokreślona wzorem f(x)=x^3+x^2-x dla każdego x\in\mathbb{R}. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y=4x. Równania stycznych zapisz w postaci kierunkowej y=ax+b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą możliwą wartość b.
Odpowiedź:
b_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz ekstrema lokalne funkcji f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3 .

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj wartość x_{max}+f(x_{max}), gdzie x_{max} jest punktem, w którym funkcja osiąga maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2+3x+3 i g(x)=\frac{1}{2}x^2+x+2.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  6 pkt ⋅ Numer: pr-30355 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Na okręgu opisano trapez równoramienny o podstawach a i b (a > b) i wysokości h, w którym a+h=k. Wyznacz przedział, do którego może należeć dłuższa podstawa a.

Podaj lewy koniec tego przedziału.

Dane
k=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Obwód tego trapezu w zależności od długości dłuższej podstawy a wyraża się wzorem O=\frac{W(a)}{a}, gdzie W(a) jest wielomianem.

Podaj największy współczynnik tego wielomianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
 Podaj długość dłuższej podstawy a tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.5 (1 pkt)
 Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm