Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -3^{-}} \frac{6x}{x+3} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(6x^9-6x^7+5x-5\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10355 ⋅ Poprawnie: 19/21 [90%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} \frac{x^2-2x-24}{x+4} & \text{dla }x\neq -4\\ m & \text{dla }x=-4 \end{array} jest funkcją ciągłą w swojej dziedzinie.

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20845 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja f(x)= \begin{cases} \frac{x^2+a}{x-2} \text{, dla } x\neq 2 \\ b\text{, dla } x=2 \end{cases} , która jest ciągła w punkcie x=2.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20510 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
» Wyznacz największe miejsce zerowe pochodnej funkcji g(x)=x^4-34x^2+20.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20858 ⋅ Poprawnie: 22/27 [81%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja określona wzorem g(x)=x^4+5. Prosta y=ax+b jest styczną do wykresu funkcji g i jest równoległa do prostej o równaniu y=4x-7.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20864 ⋅ Poprawnie: 15/27 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wyznacz przedziały monotoniczności funkcji f(x)=\frac{x^4}{(x-1)^2}.

Podaj sumę prawych końców tych wszystkich przedziałów, w których funkcja ta jest malejąca.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 7/27 [25%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz ekstrema lokalne funkcji f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3 .

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj wartość x_{max}+f(x_{max}), gdzie x_{max} jest punktem, w którym funkcja osiąga maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  6 pkt ⋅ Numer: pr-30355 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Na okręgu opisano trapez równoramienny o podstawach a i b (a > b) i wysokości h, w którym a+h=k. Wyznacz przedział, do którego może należeć dłuższa podstawa a.

Podaj lewy koniec tego przedziału.

Dane
k=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Obwód tego trapezu w zależności od długości dłuższej podstawy a wyraża się wzorem O=\frac{W(a)}{a}, gdzie W(a) jest wielomianem.

Podaj największy współczynnik tego wielomianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Podaj długość dłuższej podstawy a tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.5 (1 pkt)
 Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm