Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -1^{-}} \frac{5x}{x+1} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(5x^6-x^4-4x-2\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10353 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Dana jest funkcja h(x)= \begin{cases} m-|x-3|\text{, dla }x \lessdot -1\\ \frac{1}{2}(x^2+2mx-1)\text{, dla }x\geqslant -1 \end{cases} , gdzie m jest parametrem. Funkcja h jest ciągła w punkcie x=-1.

Wynika z tego, że m jest liczbą:

Odpowiedzi:
A. całkowitą ujemną B. należącą do przedziału (0,2)
C. pierwszą D. złożoną
Zadanie 4.  2 pkt ⋅ Numer: pr-20844 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
Dana jest funkcja f(x)= \begin{cases} \frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\ 1\text{, dla } x=1 \\ 3\text{, dla } x=2 \end{cases} .

Zbadaj ciągłość tej funkcji w punktach x=1 i x=2.

Jeśli f jest ciągła w obu punktach wpisz 2, jeśli w jednym wpisz 1, jeśli w żadnym wpisz 0.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20508 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{x-8}{x^2+6}. Oblicz f'\left(\frac{1}{2}\right).

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20855 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz równanie stycznej do wykresu funkcji określonej wzorem f(x)=2x^5+x-\frac{15}{2}, nachylonej do osi układu Ox pod kątem \frac{\pi}{4} i zapisz równanie tej stycznej w postaci y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20871 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wyznacz zbiór wartości funkcji f(x)=\frac{1}{3\cos x+5}.

Podaj lewy koniec wyznaczonego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec wyznaczonego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20502 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dana jest funkcja f(x)=4x^3+ax^2+x. Wyznacz maksymalne możliwe a, dla którego funkcja ta nie ma ekstremum lokalnego.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 9.  4 pkt ⋅ Numer: pr-30811 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dana jest funkcja g(m)=x_1\cdot x_2, gdzie x_1 i x_2 są różnymi pierwiastkami równania (m-1)x^2+(m-2)x+m^2-4m+4=0. Wyznacz te wartości parametru m, dla których funkcja g osiąga maksimum lokalne.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile wynosi to maksimum?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  6 pkt ⋅ Numer: pr-30355 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Na okręgu opisano trapez równoramienny o podstawach a i b (a > b) i wysokości h, w którym a+h=k. Wyznacz przedział, do którego może należeć dłuższa podstawa a.

Podaj lewy koniec tego przedziału.

Dane
k=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Obwód tego trapezu w zależności od długości dłuższej podstawy a wyraża się wzorem O=\frac{W(a)}{a}, gdzie W(a) jest wielomianem.

Podaj największy współczynnik tego wielomianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Podaj długość dłuższej podstawy a tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.5 (1 pkt)
 Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm