Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10340 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 3^{-}} \frac{x+5}{(x-3)(2-x)} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(3x^6+2x^4-5x+5\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10355 ⋅ Poprawnie: 19/21 [90%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} \frac{x^2+4x-12}{x-2} & \text{dla }x\neq 2\\ m & \text{dla }x=2 \end{array} jest funkcją ciągłą w swojej dziedzinie.

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20840 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
« Wyznacz parametr a, jeśli wiadomo, że \lim_{x\to 1} \left(\frac{a}{1-x}-\frac{1}{x^2-1}\right)=\frac{1}{4} .

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 15/20 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pochodna funkcji określonej wzorem f(x)=(x^2+4)(x^2-5x) jest wielomianem postaci W(x)=ax^3+bx^2+cx+d.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Oblicz f'(-1).
Odpowiedź:
f'(-1)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20857 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja fokreślona wzorem f(x)=\frac{x-2}{x^2-2x+6} dla każdego x\in\mathbb{R}. Wyznacz równanie stycznej do wykresu funkcji f w punkcie M=(2,0). Równanie to zapisz w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20511 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Styczna do wykresu paraboli określonej równaniem f(x)=-x^2+563 w punkcie P=(4,547) zawiera punkt (0,m).

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20868 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
» Ile liczb całkowitych dwucyfrowych dodatnich spełnia nierówność x^4-x^2-2x+3 > 0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja f(x)=-x^2+|x|. Wyznacz ekstrema tej funkcji.

Podaj wartość maksimum lokalnego.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  6 pkt ⋅ Numer: pr-30359 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (4 pkt)
» Największy z okręgów na rysunku ma promień długości 36, a punkty O, O_1 i O_2 nie leżą na jednej prostej:

Wyraź pole powierzchni zielonego trójkąta jako funkcję promienia r (wykorzystaj wzór P=\sqrt{p(p-a)(p-b)(p-c)}).

Wyznacz długość promienia r, przy której pole zielonego trójkąta jest największe.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Ile jest równe to największe pole?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm