Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10341 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -6^{+}} \frac{x^2-36}{x^2-2x-24} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10345 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-4x^4+\frac{1}{2}x^3+6x-2\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-16x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma minimum lokalne większe od maksimum lokalnego B. jest rosnąca w przedziale (-\infty, 0\rangle
C. ma maksimum lokalne większe od minimum lokalnego D. ma jedno ekstremum lokalne
Zadanie 4.  2 pkt ⋅ Numer: pr-20503 ⋅ Poprawnie: 9/21 [42%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
» Oblicz granicę \lim_{x\to \sqrt{5}} \frac{x^3+x^2-5x-5}{10x^2-50} .

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 5.  2 pkt ⋅ Numer: pr-20847 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{-4x^2+121}{x^2-2}.

Oblicz f'(2).

Odpowiedź:
f'(2)=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20859 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu y=ax+b jest styczną do wykresu funkcji określonej wzorem f(x)=(x+2)^2+\frac{22}{3}. Punkt styczności ma współrzędne A=(1,y_0).

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20512 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Dana jest funkcja h(x)=\frac{2x^2-20x+53}{(2x-13)^2}. Do wykresy tej funkcji poprowadzono styczną w punkcie o odciętej x_0=7. Wyznacz współczynnik kierunkowy a prostej prostopadłej do tej stycznej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 7/27 [25%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz ekstrema lokalne funkcji f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3 .

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj wartość x_{max}+f(x_{max}), gdzie x_{max} jest punktem, w którym funkcja osiąga maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30244 ⋅ Poprawnie: 5/18 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
Liczby x i y spełniają warunek y=x+1, a wyrażenie \frac{y^2-2x+1}{x^2+2y} jest największe możliwe.

Jaką wartość ma to wyrażenie?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Dla jakiej wartości x wartość wyrażenia jest maksymalna?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm