Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10343 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to 0^{-}} \frac{7-x^2}{x^3-7x} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left(-4x^8-5x^6+x+6\right) .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
Która z poniższych funkcji nie ma ekstremum lokalnego:
Odpowiedzi:
A. f(x)=\frac{1}{3}x^3+2x B. f(x)=3x^3+2x^2
C. f(x)=(4x+1)^2 D. f(x)=4x^2+5x
Zadanie 4.  2 pkt ⋅ Numer: pr-20841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
Oblicz granicę \lim_{x\to 2} \frac{x^3-x^2-x-2}{x^2-x-2} .

Podaj tę granicę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20849 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1.6 pkt)
 « Rozwiąż równanie f(x)=f'(x), gdzie f(x)=\frac{x+6}{x+2}.

Podaj największe z rozwiązań całkowitych tego równania.

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Podpunkt 5.2 (0.4 pkt)
 Ile rozwiązań ma to równanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20851 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Styczna do paraboli o równaniu y=\sqrt{3}x^2 +8\sqrt{3}x +3+16\sqrt{3} w punkcie P=(x_0,y_0) jest nachylona do osi Ox układu współrzędnych pod kątem o mierze 30^{\circ}.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz y_0.
Odpowiedź:
y_0= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20511 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Styczna do wykresu paraboli określonej równaniem f(x)=-x^2+603 w punkcie P=(4,587) zawiera punkt (0,m).

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20870 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Wyznacz ekstrema lokalne funkcji f(x)=(x+2)^2(x-4).

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Ile rozwiązań ma równanie f(x)=-30?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30802 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Prosta o równaniu y=ax+b jest styczna do obu wykresów funkcji określonych wzorami f(x)=x^2-7x+13 i g(x)=\frac{1}{2}x^2-4x+\frac{19}{2}.

Podaj wszystkie możliwe wartości a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj odcięte punktów, w których te styczne przecinają oś Ox.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  6 pkt ⋅ Numer: pr-30359 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (4 pkt)
» Największy z okręgów na rysunku ma promień długości 36, a punkty O, O_1 i O_2 nie leżą na jednej prostej:

Wyraź pole powierzchni zielonego trójkąta jako funkcję promienia r (wykorzystaj wzór P=\sqrt{p(p-a)(p-b)(p-c)}).

Wyznacz długość promienia r, przy której pole zielonego trójkąta jest największe.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Ile jest równe to największe pole?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm