Podgląd testu : lo2@sp-analiza-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10340 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oblicz granicę
\lim_{x\to 3^{-}} \frac{x+5}{(x-3)(2-x)}
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz granicę
\lim_{x\to +\infty} \left(3x^6+2x^4-5x+5\right)
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pr-10355 ⋅ Poprawnie: 19/21 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Funkcja określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
\frac{x^2+4x-12}{x-2} & \text{dla }x\neq 2\\
m & \text{dla }x=2
\end{array}
jest funkcją ciągłą w swojej dziedzinie.
Wyznacz wartość parametru m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 2 pkt ⋅ Numer: pr-20840 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
« Wyznacz parametr
a , jeśli wiadomo, że
\lim_{x\to 1} \left(\frac{a}{1-x}-\frac{1}{x^2-1}\right)=\frac{1}{4}
.
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 2 pkt ⋅ Numer: pr-20848 ⋅ Poprawnie: 15/20 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pochodna funkcji określonej wzorem
f(x)=(x^2+4)(x^2-5x)
jest wielomianem postaci
W(x)=ax^3+bx^2+cx+d .
Podaj współczynniki b i c .
Odpowiedzi:
Podpunkt 5.2 (1 pkt)
Odpowiedź:
f'(-1)=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20857 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\frac{x-2}{x^2-2x+6} dla każdego
x\in\mathbb{R} . Wyznacz równanie stycznej
do wykresu funkcji
f w punkcie
M=(2,0) .
Równanie to zapisz w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20511 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Styczna do wykresu paraboli określonej równaniem
f(x)=-x^2+563 w
punkcie
P=(4,547) zawiera punkt
(0,m) .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20868 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Ile liczb całkowitych dwucyfrowych dodatnich spełnia nierówność
x^4-x^2-2x+3 > 0 ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja
f(x)=-x^2+|x| . Wyznacz ekstrema
tej funkcji.
Podaj wartość maksimum lokalnego.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 6 pkt ⋅ Numer: pr-30359 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (4 pkt)
» Największy z okręgów na rysunku ma promień długości
36 , a punkty
O ,
O_1 i
O_2 nie
leżą na jednej prostej:
Wyraź pole powierzchni zielonego trójkąta jako funkcję
promienia r
(wykorzystaj wzór P=\sqrt{p(p-a)(p-b)(p-c)} ).
Wyznacz długość promienia r , przy której pole
zielonego trójkąta jest największe.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Ile jest równe to największe pole?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż