Podgląd testu : lo2@sp-analiza-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10342 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oblicz granicę
\lim_{x\to 1^{-}} \frac{4x}{x-1}
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10344 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz granicę
\lim_{x\to +\infty} \left(-3x^5+x^3+6x-5\right)
.
Jako odpowiedź wpisz:
999 , jeżeli granica jest równa +\infty ,
-999 , jeżeli granica jest równa -\infty ,
obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 3.1 (1 pkt)
Styczna do wykresu funkcji określonej wzorem
f(x)=x^2-10x+6
w punkcie o współrzędnych
(x_0,y_0) jest równoległa do prostej
o równaniu
y=2x-8 .
Wyznacz odciętą x_0 .
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-20504 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Oblicz granicę
\lim_{x\to 2} \frac{x^2-3x+2}{3x^2-6x}
.
Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego
otrzymanego wyniku.
Odpowiedź:
Wpisz odpowiedź:
(wpisz odpowiedź tekstową)
Zadanie 5. 2 pkt ⋅ Numer: pr-20505 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (2 pkt)
Dana jest funkcja
f(x)=\frac{x}{(x-1)^2} .
Oblicz
f'(-3) .
Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego
otrzymanego wyniku.
Odpowiedź:
Wpisz odpowiedź:
(wpisz odpowiedź tekstową)
Zadanie 6. 2 pkt ⋅ Numer: pr-20851 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Styczna do paraboli o równaniu
y=\sqrt{3}x^2
-2\sqrt{3}x
-3+\sqrt{3} w punkcie
P=(x_0,y_0) jest nachylona do osi
Ox układu współrzędnych pod kątem o mierze
30^{\circ} .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-20863 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz przedziały monotoniczności funkcji
f(x)=x+\frac{9}{x} .
Podaj sumę prawych końców tych wszystkich przedziałów, w których funkcja ta
jest malejąca.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 7/27 [25%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz ekstrema lokalne funkcji
f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3
.
Podaj wartość x_{min}+f(x_{min}) , gdzie
x_{min} jest punktem, w którym funkcja osiąga
minimum lokalne.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj wartość
x_{max}+f(x_{max}) , gdzie
x_{max} jest punktem, w którym funkcja osiąga
maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja
f(x)=-x^2+|x| . Wyznacz ekstrema
tej funkcji.
Podaj wartość maksimum lokalnego.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30249 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(1,9) należy do prostej, która jest
wykresem funkcji malejącej. Prosta ta odcina na osiach układu dwa odcinki,
których suma długości jest najmniejsza możliwa. Wyznacz równanie tej prostej
w postaci
y=ax+b .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż