Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-analiza-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10340 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz granicę \lim_{x\to -6^{-}} \frac{x+5}{(x+6)(4-x)} .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10347 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz granicę \lim_{x\to +\infty} \left[\frac{x^3}{x^2-49}-\frac{x^2+1}{x+7}\right] .

Jako odpowiedź wpisz:

  • 999, jeżeli granica jest równa +\infty,
  • -999, jeżeli granica jest równa -\infty,
  • obliczoną granicę w każdym innym przypadku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^2-14x+30 w punkcie o współrzędnych (x_0,y_0) jest równoległa do prostej o równaniu y=2x-12.

Wyznacz odciętą x_0.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
Funkcja f(x)=\frac{x^2+ax+a}{x^2+5x+6} ma granicę właściwą w punkcie x_0=-3. Wyznacz miejsca zerowe tej funkcji.

Podaj najmniejsze z miejsc zerowych.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Podaj wartość a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20506 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (2 pkt)
Dana jest funkcja f(x)=\frac{2x^4+15}{6-x^2}. Oblicz f'(1).

Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 6.  2 pkt ⋅ Numer: pr-20856 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja fokreślona wzorem f(x)=x^3-11x^2+39x-44 dla każdego x\in\mathbb{R}. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y=4x. Równania stycznych zapisz w postaci kierunkowej y=ax+b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą możliwą wartość b.
Odpowiedź:
b_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20864 ⋅ Poprawnie: 16/27 [59%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wyznacz przedziały monotoniczności funkcji f(x)=\frac{x^4}{(x-1)^2}.

Podaj sumę prawych końców tych wszystkich przedziałów, w których funkcja ta jest malejąca.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20502 ⋅ Poprawnie: 12/27 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dana jest funkcja f(x)=4x^3+ax^2+x. Wyznacz maksymalne możliwe a, dla którego funkcja ta nie ma ekstremum lokalnego.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 9.  4 pkt ⋅ Numer: pr-30805 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Styczna do wykresu funkcji określonej wzorem f(x)=x^3-15x^2+72x-113 w punkcie P=(x_0,y_0) jest równoległa do osi Ox.

Podaj najmniejsze możliwe y_0.

Odpowiedź:
y_{0_{min}}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj największe możliwe y_0.
Odpowiedź:
y_{0_{max}}= (wpisz liczbę całkowitą)
Zadanie 10.  6 pkt ⋅ Numer: pr-30355 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Na okręgu opisano trapez równoramienny o podstawach a i b (a > b) i wysokości h, w którym a+h=k. Wyznacz przedział, do którego może należeć dłuższa podstawa a.

Podaj lewy koniec tego przedziału.

Dane
k=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Obwód tego trapezu w zależności od długości dłuższej podstawy a wyraża się wzorem O=\frac{W(a)}{a}, gdzie W(a) jest wielomianem.

Podaj największy współczynnik tego wielomianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Podaj długość dłuższej podstawy a tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.5 (1 pkt)
 Oblicz tangens kąta ostrego tego z trapezów, który ma najmniejszy obwód.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm