Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 10:
Odpowiedzi:
A. \frac{\log_{5}{10}}{2} B. \log_{5}{10}
C. \log_{10}{25} D. 10\cdot \log_{5}{100}
E. \log_{5}{100} F. \log_{10}{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Funkcja h(x)=(-7m+6)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. \langle p, +\infty)
C. (-\infty, p)\cup(q, +\infty) D. (p, q)
E. (-\infty, p\rangle F. (-\infty, p)
Podpunkt 2.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{625}\cdot 5^x otrzymamy przesuwając wykres funkcji g(x)=5^x o:
Odpowiedzi:
A. dwie jednostki w górę B. cztery jednostki w dół
C. cztery jednostki w prawo D. cztery jednostki w lewo
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=16, jeśli f(x)=14^{2x}, zachodzi dla x=-\log_{14}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 343^{\log_{7}{3}}=9 B. 49^{\log_{7}{3}}=27
C. 49^{\log_{7}{3}}=9 D. 343^{\log_{49}{3}}=27
Zadanie 6.  2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Do wykresu funkcji f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty P=(-2,p) i Q=\left(q,\frac{1}{a}\right).

Podaj p.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20294 ⋅ Poprawnie: 11/15 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wartości parametrów p i q wiedząc, że dziedziną funkcji f(x)=\log_{\frac{1}{2}}{(x-p)}+q jest przedział (3,+\infty) i do wykresu należy punkt P=\left(11,-2\right).

Podaj p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dane są funkcje f(x)=2^{ax-4} i g(x)=5-\left(\frac{1}{2}\right)^{ax-6}. Rozwiąż nierówność f(x)\leqslant g(x).

Jaka największa liczba spełnia tę nierówność?

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
b=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm