Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=6
Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p)
C. \langle p, q\rangle D. (p, q)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=64.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=8^{-x}-4 ma postać:
Odpowiedzi:
A. \langle p, q\rangle B. \langle p, +\infty)
C. (-\infty, p)\cup(q, +\infty) D. (p, q)
E. (p,+\infty) F. (-\infty, p)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=9^x.

Funkcja określona wzorem h(x)=4+g(x+2) z prostą o równaniu y-7=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. nie ma punktów wspólnych
C. ma dokładnie dwa punkty wspólne D. ma dokładnie jeden punkt wspólny
Zadanie 5.  1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=6
Odpowiedzi:
T/N : (216, 3) T/N : (1,0)
Zadanie 6.  2 pkt ⋅ Numer: pp-20571 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż równanie: b^{x+a}\cdot \left(\frac{1}{b}\right)^{2x+2a+5}=b^3 .

Podaj rozwiązanie tego równania.

Dane
a=6
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność \left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3 .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=6
b=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych z przedziału z przedziału \langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm