Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b.
Zbiór ZW_f ma postać:
Dane
b=3
Odpowiedzi:
|
A. (-\infty, p)\cup(q,+\infty)
|
B. (p, q)
|
|
C. (-\infty, p)
|
D. \langle p,+\infty)
|
|
E. (-\infty, p\rangle
|
F. \langle p, q\rangle
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=3^{6x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{3}{6},27\right)
|
B. A=\left(-\frac{1}{6},\frac{1}{3}\right)
|
|
C. A=(0,1)
|
D. A=\left(-\frac{1}{2},-\frac{1}{27}\right)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=8^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -8^{x}
|
B. 8^{-x}-7
|
|
C. \left(\frac{1}{7}\right)^{x}
|
D. -8^{-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(5,-32).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. 216^{\log_{36}{3}}=27
|
B. 36^{\log_{6}{3}}=9
|
|
C. 216^{\log_{6}{3}}=9
|
D. 36^{\log_{6}{3}}=27
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20548 ⋅ Poprawnie: 21/32 [65%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Rozwiąż nierówność:
\frac{7^{ax^2}}{(\sqrt{7})^{bx+0,5}}\leqslant \sqrt[4]{7}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=25
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a.
Punkt
B=(2, 0) należy do wykresu funkcji
f.
Podaj m.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g.
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x).
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=128
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)