Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3) .
Wówczas:
Odpowiedzi:
A. a-b=1\frac{7}{36}
B. a-b=3
C. a\cdot b=-1\frac{11}{16}
D. a\cdot b=-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-5x-4 \\y=9^{x-2}\end{cases} .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{9}\right)^x .
Funkcja g(x)=f(x+4)+3 :
Odpowiedzi:
A. ma jedno miejsce zerowe
B. ma dwa miejsca zerowe
C. nie ma miejsc zerowych
D. ma więcej niż dwa miejsca zerowe
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(4,-40) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=-5
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20500 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Punkt
P=\left(p,\frac{1}{q}\right)
należy do wykresu funkcji wykładniczej
f(x)=a^x .
Oblicz wartość tej funkcji dla argumentu
\frac{m}{2} .
Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego
otrzymanego wyniku.
Dane
p=8
q=625
m=-3
Odpowiedź:
Wpisz odpowiedź:
(wpisz odpowiedź tekstową)
Zadanie 7. 2 pkt ⋅ Numer: pr-20297 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\log_{x-7}{7}-\log_{x-5}{(-x+11)} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych
przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też
największy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 9.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=6
b=216
c=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż