Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a\cdot b=-3 B. a\cdot b=-1\frac{11}{16}
C. a-b=3 D. a-b=1\frac{7}{36}
Zadanie 2.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji y=-3-\frac{1}{10^x} nie przecina prostej:
Odpowiedzi:
A. y=-3-\sqrt{2} B. y=-3+\sqrt{2}
C. y=10x D. x=\sqrt{26}
Zadanie 3.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{16}\right)^x.

Funkcja g(x)=f(x+3)+3:

Odpowiedzi:
A. ma więcej niż dwa miejsca zerowe B. ma jedno miejsce zerowe
C. nie ma miejsc zerowych D. ma dwa miejsca zerowe
Zadanie 4.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{3}}{72}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)} i zapisz ją w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=11
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20300 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x+3}{x+7}}{\left(x^3+11x^2+32x+28\right)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wykres funkcji f(x)=c^x zawiera punkt A=(2\log_{2}{a},b).

Podaj c.

Dane
a=11
b=121
q=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|f(x+1)-q|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm