Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 7:
Odpowiedzi:
A. \log_{7}{25} B. \frac{\log_{5}{7}}{2}
C. \log_{5}{49} D. \log_{5}{7}
E. 7\cdot \log_{5}{49} F. \log_{7}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-8x-1 \\y=6^{x+3}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=8^{-x}-6 ma postać:
Odpowiedzi:
A. (-\infty, p) B. \langle p, q\rangle
C. (p,+\infty) D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty) F. (-\infty, p\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 9^{x^2}\cdot 3=9^{\frac{163}{2}} oraz \log_{\frac{1}{9}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20324 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie \left(\frac{2}{5}\right)^{x+a}\cdot 2,5^{-x+3-a}=\frac{4}{25} .

Podaj największe z rozwiązań.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20307 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Rozwiąż równanie \log_{2}{(3-\log_{9}{x})}=1.

Podaj największe z rozwiązań.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dane jest równanie (k+4)^2x^2+(k+3)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm