Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=16
y_0=256
Odpowiedzi:
A. \left(15,\frac{\sqrt{2}}{256\sqrt{2}}\right) B. \left(17,\frac{1}{256\sqrt{2}}\right)
C. \left(15,\frac{1}{512}\right) D. \left(17,\frac{1}{128}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{7}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 14\cdot \pi -44 B. \frac{\sqrt{\pi}}{4}
C. 5^{-7} D. 21\cdot \pi -65
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=8^{-x}-3 ma postać:
Odpowiedzi:
A. (p,+\infty) B. \langle p, q\rangle
C. (-\infty, p) D. (-\infty, p\rangle
E. (-\infty, p)\cup(q, +\infty) F. \langle p, +\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=9^x.

Funkcja określona wzorem h(x)=-6+g(x+5) z prostą o równaniu y+5=0:

Odpowiedzi:
A. ma dokładnie jeden punkt wspólny B. nie ma punktów wspólnych
C. ma nieskończenie wiele punktów wspólnych D. ma dokładnie dwa punkty wspólne
Zadanie 5.  1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)} i zapisz ją w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20325 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie 9^{\frac{x-a}{2}-1}+3^{x-a}=7290 .

Podaj największe z rozwiązań.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20300 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x-7}{x-3}}{\left(x^3-19x^2+112x-192\right)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Naszkicuj wykres funkcji f(x)=\left|a^{2-x}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=9
b=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm