Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=6
y_0=8
Odpowiedzi:
A. \left(5,\frac{\sqrt{2}}{8\sqrt{2}}\right) B. \left(5,\frac{1}{16}\right)
C. \left(7,\frac{1}{4}\right) D. \left(7,\frac{1}{8\sqrt{2}}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=8.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w prawo B. cztery jednostki w lewo
C. dwie jednostki w górę D. cztery jednostki w dół
Zadanie 4.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(3,-47).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=3
Odpowiedzi:
T/N : (243, 4) T/N : \left(\frac{1}{9}, -2\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}

Podaj rozwiązanie tego równania.

Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich argumentów funkcja f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości większe niż funkcja g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?

Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego przedziału.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm