Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=6
y_0=8
Odpowiedzi:
A. \left(5,\frac{1}{16}\right)
B. \left(7,\frac{1}{4}\right)
C. \left(5,\frac{\sqrt{2}}{8\sqrt{2}}\right)
D. \left(7,\frac{1}{8\sqrt{2}}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
g(x)=4^{3x+1} przyjmuje wartość:
Odpowiedzi:
A. 0
B. \frac{\sqrt{5}}{5}
C. -\frac{1}{5}
D. -\frac{\pi}{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-4}-77 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)}
i zapisz ją w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż równanie
\left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1}
.
Podaj największe z rozwiązań.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
4\cdot \left(\sqrt{8}\right)^{ax}\leqslant
\left(\frac{2\sqrt{2}}{16}\right)^{-2-ax}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3 .
Wyznacz a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x+3|}-2 .
Podaj najmniejszą wartość funkcji g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a , a funkcja
f
określona jest następująco:
f(x)=g(-x) .
Wyznacz m .
Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż