Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b .
Zbiór ZW_f ma postać:
Dane
b=-6
Odpowiedzi:
A. (p, q)
B. \langle p, q\rangle
C. (-\infty, p)\cup(q,+\infty)
D. (-\infty, p\rangle
E. \langle p,+\infty)
F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(4\cdot m-5)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. (-\infty,p\rangle
C. \langle p, +\infty)
D. (p, +\infty)
E. (-\infty,p)
F. \langle p, q\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=3^x+1 .
Oblicz wartość funkcji określonej wzorem g(x)=f(x-2)
dla argumentu x=7 .
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{5}}{25}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10159 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych należy do dziedziny funkcji określonej wzorem
g(x)=\log_{4}{(25-x^2)} ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż równanie
\left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1}
.
Podaj największe z rozwiązań.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20318 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla jakich wartości
x funkcja
f(x)=2^{3x+a}-b przyjmuje wartości większe od
c ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-3
b=7
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Wykres funkcji
f(x)=a^x zawiera punkt
A=\left(-\frac{3}{2},\frac{1}{8}\right) .
Podaj a .
Dane
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|b-f(x-1)| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a , a funkcja
f
określona jest następująco:
f(x)=g(-x) .
Wyznacz m .
Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż