Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-4\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=64.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{2-x}+4.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. \langle p, q\rangle
|
|
C. \langle p, +\infty)
|
D. (-\infty,p)
|
|
E. (p, q)
|
F. (-\infty, p)\cup(q, +\infty)
|
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10154 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{bx} powstaje z przesunięcia
wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien wektor
\vec{u}=[p,q].
Wyznacz liczby p i q.
Dane
a=5
b=3125
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20579 ⋅ Poprawnie: 29/42 [69%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Rozwiąż równanie:
3^{-ax}=4\cdot \left(\frac{1}{3}\right)^{ax+1}-9
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 3 pkt ⋅ Numer: pr-20299 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Wyznacz dziedzinę funkcji
f(x)=\log{\frac{2x+4}{x+4}}+\log_{0,5}{(-3-2x)}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców
przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największy z tych końców przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj ten z końców przedziałów, który jest liczbą i nie jest ani najmniejszy, ani też największy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a.
Punkt
B=(2, 0) należy do wykresu funkcji
f.
Podaj m.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right|.
Oblicz f(1+\log_{2}{5}).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)