Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x.
Do wykresu tej funkcji należy też punkt:
Dane
x_0=2
y_0=2
Odpowiedzi:
|
A. \left(3,\frac{1}{1}\right)
|
B. \left(1,\frac{\sqrt{2}}{2\sqrt{2}}\right)
|
|
C. \left(3,\frac{1}{2\sqrt{2}}\right)
|
D. \left(1,\frac{1}{4}\right)
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=2
Odpowiedzi:
|
A. A=(4,-4)
|
B. A=(4,4)
|
|
C. A=(2,4)
|
D. A=(4,-2)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=3^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -3^{x}
|
B. -3^{-x}
|
|
C. \left(\frac{1}{7}\right)^{x}
|
D. 3^{-x}-2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=2^x.
Funkcja określona wzorem h(x)=-6+g(x-5) z prostą o równaniu
y+7=0:
Odpowiedzi:
|
A. ma dokładnie dwa punkty wspólne
|
B. ma dokładnie jeden punkt wspólny
|
|
C. nie ma punktów wspólnych
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p, dla której prawdziwa jest równość
\log_{\sqrt{2}}{(2+\log_{2}{p})}=0.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20576 ⋅ Poprawnie: 120/182 [65%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
2^{x+m}=\left(\frac{1}{8}\right)^{\frac{n}{3x}}
Podaj najmniejsze rozwiązanie tego równania.
Dane
m=-12
n=20
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20547 ⋅ Poprawnie: 25/71 [35%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{5}{7}\right)^{x^2+bx} \geqslant \left(\frac{7}{5}\right)^{c}
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
b=3
c=-40
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Naszkicuj wykres funkcji
f(x)=\left|a^{x+1}-b\right|.
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Dane
a=3
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)