Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-5\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-9x+3 \\y=2^{x-6}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=10^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. 10^{-x}-9
|
B. -10^{x}
|
|
C. \left(\frac{1}{7}\right)^{x}
|
D. -10^{-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(1,\frac{1}{2}\right) i
B=\left(3,2\right).
Oblicz f(7).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. 64^{\log_{8}{3}}=9
|
B. 512^{\log_{64}{3}}=27
|
|
C. 512^{\log_{8}{3}}=9
|
D. 64^{\log_{8}{3}}=27
|
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20321 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wiadomo, że
8^x=27 oraz
2^{x-2ay}=27.
Zapisz liczbę y w postaci
p\cdot \log_{2}{\frac{1}{3}}.
Podaj p.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20302 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Wyznacz dziedzinę funkcji
f(x)=\log_{x+2}{\frac{x^2-7x}{x^2+2x}}
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/107 [13%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=49
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)