Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=6
Odpowiedzi:
A. \langle p, q\rangle B. (-\infty, p\rangle
C. (p,+\infty) D. \langle p,+\infty)
E. (p, q) F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=6
b=-3
Odpowiedzi:
A. A=(-1,-36) B. A=(-1,36)
C. A=(-1,-6) D. A=(-3,36)
Zadanie 3.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{4-x}-4.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. \langle p, q\rangle B. (p, q)
C. (-\infty,p) D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty) F. (-\infty, p\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=9^x.

Funkcja określona wzorem h(x)=-2+g(x+3) z prostą o równaniu y+2=0:

Odpowiedzi:
A. ma dokładnie dwa punkty wspólne B. ma nieskończenie wiele punktów wspólnych
C. ma dokładnie jeden punkt wspólny D. nie ma punktów wspólnych
Zadanie 5.  1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 512^{\log_{64}{3}}=27 B. 64^{\log_{8}{3}}=9
C. 64^{\log_{8}{3}}=27 D. 512^{\log_{8}{3}}=9
Zadanie 6.  2 pkt ⋅ Numer: pr-20322 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie 4\cdot 2^{x+a}=4^{x-6+a} .

Podaj największe z rozwiązań.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20319 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\frac{1}{4}\cdot 4^{2x+a}-b przyjmuje wartości większe od c?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=3
b=63
c=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Naszkicuj wykres funkcji f(x)=\left|a^{x+1}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=9
b=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm