Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dziedziną funkcji określonej wzorem
g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}}
jest zbiór postaci:
Dane
a=5
b=625
Odpowiedzi:
|
A. (-\infty, p)
|
B. \langle p,+\infty)
|
|
C. (p, q)
|
D. \langle p, q\rangle
|
|
E. (p,+\infty)
|
F. (-\infty, p\rangle
|
Podpunkt 1.2 (0.8 pkt)
Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{10}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{6}
|
B. 6\cdot \pi -18
|
|
C. 13\cdot \pi -41
|
D. 5^{-7}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=\left(\frac{1}{12}\right)^{x}+2
|
B. g(x)=12\cdot\left(\frac{1}{12}\right)^{x+1}
|
|
C. g(x)=144\cdot\left(\frac{1}{12}\right)^x
|
D. g(x)=\left(\frac{1}{12}\right)^{x}-2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-9}-239.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10154 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{bx} powstaje z przesunięcia
wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien wektor
\vec{u}=[p,q].
Wyznacz liczby p i q.
Dane
a=6
b=7776
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20321 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wiadomo, że
8^x=27 oraz
2^{x-2ay}=27.
Zapisz liczbę y w postaci
p\cdot \log_{2}{\frac{1}{3}}.
Podaj p.
Dane
a=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20308 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Dla jakich wartości parametru
m równanie
1-3x=\log_{3}{m} ma rozwiązanie dodatnie?
Podaj najmniejsze dodatnie m, które nie spełnia
tego warunku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są funkcje
f(x)=1-2^{x+a} i
g(x)=x^2+(2a-2)x+a^2-2a.
Rozwiąż graficznie nierówność
f(x)\leqslant g(x).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 9.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)