Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b.
Zbiór ZW_f ma postać:
Dane
b=5
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. \langle p, q\rangle
|
|
C. (-\infty, p)\cup(q,+\infty)
|
D. (p,+\infty)
|
|
E. (-\infty, p)
|
F. \langle p,+\infty)
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(2, 49) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=8^{-x}-4 ma postać:
Odpowiedzi:
|
A. (p,+\infty)
|
B. (-\infty, p)
|
|
C. \langle p, q\rangle
|
D. (p, q)
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. (-\infty, p\rangle
|
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(4,4\right) i
B=\left(2,1\right).
Oblicz f(10).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10154 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{bx} powstaje z przesunięcia
wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien wektor
\vec{u}=[p,q].
Wyznacz liczby p i q.
Dane
a=5
b=125
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Do wykresu funkcji
h(x)=a^x należy punkt
P=\left(-\frac{1}{2},b\right).
Oblicz a.
Dane
b=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20311 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
\log_{2}{x}-\log_{0,5}{x}=-2\log_{0,5}{5}.
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Naszkicuj wykresy funkcji
f(x)=2^x i
g(x)=|f(x-a)-b|.
Podaj najmniejszą wartość funkcji g w przedziale
\langle p,q\rangle.
Dane
a=3
b=16
p=3
q=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj największą wartość funkcji
g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj miejsce zerowe funkcji
g.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 9.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)