Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
7 :
Odpowiedzi:
A. \log_{3}{7}
B. \log_{7}{7}
C. \frac{\log_{3}{7}}{2}
D. \log_{7}{9}
E. 7\cdot \log_{3}{49}
F. \log_{3}{49}
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(11\cdot m+7)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. (-\infty,p)
C. \langle p, q\rangle
D. (p, +\infty)
E. (-\infty,p\rangle
F. \langle p, +\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{81}\cdot 3^x otrzymamy
przesuwając wykres funkcji
g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w lewo
B. cztery jednostki w dół
C. dwie jednostki w górę
D. cztery jednostki w prawo
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=5^x .
Funkcja określona wzorem h(x)=3+g(x-1) z prostą o równaniu
y-3=0 :
Odpowiedzi:
A. ma dokładnie jeden punkt wspólny
B. ma nieskończenie wiele punktów wspólnych
C. ma dokładnie dwa punkty wspólne
D. nie ma punktów wspólnych
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
A. 16^{\log_{4}{3}}=27
B. 64^{\log_{4}{3}}=9
C. 64^{\log_{16}{3}}=27
D. 16^{\log_{4}{3}}=9
Zadanie 6. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=7
b=10
c=3
d=5
e=5
f=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20315 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż graficznie nierówność
\log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1
w liczbach dodatnich.
Podaj największą z liczb spełniających tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Wykres funkcji
f(x)=a^x zawiera punkt
A=\left(-\frac{3}{2},\frac{1}{8}\right) .
Podaj a .
Dane
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|b-f(x-1)| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
b=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż