Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=-3
Odpowiedzi:
A. (p, q) B. (-\infty, p\rangle
C. (p,+\infty) D. (-\infty, p)\cup(q,+\infty)
E. \langle p, q\rangle F. \langle p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{3},5\right). Wówczas liczba a jest równa \frac{1}{5^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{12}\right)^x.

Funkcja g(x)=f(x+4)-1:

Odpowiedzi:
A. ma dwa miejsca zerowe B. ma jedno miejsce zerowe
C. ma więcej niż dwa miejsca zerowe D. nie ma miejsc zerowych
Zadanie 4.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-4}-77.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)} i zapisz ją w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20500 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Punkt P=\left(p,\frac{1}{q}\right) należy do wykresu funkcji wykładniczej f(x)=a^x. Oblicz wartość tej funkcji dla argumentu \frac{m}{2}.

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Dane
p=8
q=625
m=-11
Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 7.  2 pkt ⋅ Numer: pr-20295 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja h(x)=\log_{\frac{-x}{x+5}}{\frac{x^2+5x+4}{x+1}} . Wyznacz D_h.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj sumę tych wszystkich końców przedziałów, które nie są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=32
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm