Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3).
Wówczas:
Odpowiedzi:
|
A. a-b=1\frac{7}{36}
|
B. a\cdot b=-1\frac{11}{16}
|
|
C. a-b=3
|
D. a\cdot b=-3
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(2\cdot m+3)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. \langle p, +\infty)
|
|
C. \langle p, q\rangle
|
D. (-\infty,p)
|
|
E. (p, q)
|
F. (-\infty,p\rangle
|
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{16}\cdot 2^x otrzymamy
przesuwając wykres funkcji
g(x)=2^x o:
Odpowiedzi:
|
A. dwie jednostki w górę
|
B. cztery jednostki w lewo
|
|
C. cztery jednostki w dół
|
D. cztery jednostki w prawo
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=3^x.
Funkcja określona wzorem h(x)=-6+g(x-1) z prostą o równaniu
y+3=0:
Odpowiedzi:
|
A. nie ma punktów wspólnych
|
B. ma dokładnie dwa punkty wspólne
|
|
C. ma dokładnie jeden punkt wspólny
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10159 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych należy do dziedziny funkcji określonej wzorem
g(x)=\log_{5}{(16-x^2)}?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20323 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Rozwiąż równanie
9^{x^2-2ax+5+a^2}=27^{4x-2-4a}.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 3 pkt ⋅ Numer: pr-20298 ⋅ Poprawnie: 0/2 [0%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\log_{x^2-1}{(x^4+5x^3-25x^2-125x)}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców przedziałów,
który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największy z tych końców przedziałów,
który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj sumę tych ujemnych końców przedziałów,
które są liczbami (każdy ujemny koniec sumujemy tylko raz).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Naszkicuj wykres funkcji
f(x)=\left|a^{x+1}-b\right|.
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Dane
a=3
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)