Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
10:
Odpowiedzi:
|
A. \log_{3}{100}
|
B. \log_{10}{9}
|
|
C. \log_{10}{10}
|
D. 10\cdot \log_{3}{100}
|
|
E. \log_{3}{10}
|
F. \frac{\log_{3}{10}}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=5^{x+2}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (-\infty,2)
|
B. (0,+\infty)
|
|
C. (-\infty,0\rangle
|
D. \langle 0,+\infty)
|
|
E. \emptyset
|
F. \mathbb{R}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{6}\right)^{6-x}
|
B. h(x)=\left(\frac{1}{6}\right)^{-x}
|
|
C. h(x)=-6^{-x}
|
D. h(x)=6^{5-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=15, jeśli
f(x)=10^{2x}, zachodzi dla
x=-\log_{10}{p}.
Podaj liczbę p.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji
h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)}?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20564 ⋅ Poprawnie: 18/43 [41%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
3^{\frac{2x}{a}}+\left(\frac{27}{4}\right)^{-1}+9^{\frac{x}{a}}=2\cdot 3^{\frac{2x}{a}+1}
Podaj rozwiązanie tego równania.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20318 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Dla jakich wartości
x funkcja
f(x)=2^{3x+a}-b przyjmuje wartości większe od
c?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=3
b=15
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są funkcje
f(x)=1-2^{x+a} i
g(x)=x^2+(2a-2)x+a^2-2a.
Rozwiąż graficznie nierówność
f(x)\leqslant g(x).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g.
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x).
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=64
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)