Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-3\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=5^{x-1}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. \mathbb{R} B. (-\infty,0\rangle
C. \emptyset D. (-\infty,0)
E. (-\infty,-1) F. (-1,+\infty)
Zadanie 3.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. B
C. C D. D
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=5^x.

Funkcja określona wzorem h(x)=-5+g(x+1) z prostą o równaniu y+2=0:

Odpowiedzi:
A. ma dokładnie jeden punkt wspólny B. nie ma punktów wspólnych
C. ma nieskończenie wiele punktów wspólnych D. ma dokładnie dwa punkty wspólne
Zadanie 5.  1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p, dla której prawdziwa jest równość \log_{\sqrt{2}}{(2+\log_{2}{p})}=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Rozwiąż równanie: 7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}

Podaj rozwiązanie tego równania.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20550 ⋅ Poprawnie: 17/25 [68%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: 2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm