Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x.
Do wykresu tej funkcji należy też punkt:
Dane
x_0=16
y_0=256
Odpowiedzi:
|
A. \left(15,\frac{\sqrt{2}}{256\sqrt{2}}\right)
|
B. \left(17,\frac{1}{256\sqrt{2}}\right)
|
|
C. \left(17,\frac{1}{128}\right)
|
D. \left(15,\frac{1}{512}\right)
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Funkcja
g(x)=4^{6x+1} przyjmuje wartość:
Odpowiedzi:
|
A. 0
|
B. -\frac{1}{10}
|
|
C. -\sqrt{10}
|
D. \frac{\sqrt{8}}{8}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{9}\right)^{9-x}
|
B. h(x)=9^{4-x}
|
|
C. h(x)=-9^{-x}
|
D. h(x)=\left(\frac{1}{9}\right)^{-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
9^{x^2}\cdot 3=9^{\frac{163}{2}}
oraz
\log_{\frac{1}{9}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. 64^{\log_{8}{3}}=9
|
B. 512^{\log_{8}{3}}=9
|
|
C. 64^{\log_{8}{3}}=27
|
D. 512^{\log_{64}{3}}=27
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20576 ⋅ Poprawnie: 120/182 [65%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
2^{x+m}=\left(\frac{1}{8}\right)^{\frac{n}{3x}}
Podaj najmniejsze rozwiązanie tego równania.
Dane
m=-18
n=80
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
dziedziną funkcji
g(x)=\log{
\left(
\frac{m}{2x^2+2mx+\frac{m}{2}+3}
\right)
}
.
jest zbiór
\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6}.
Rozwiąż nierówność
f(x)\leqslant g(x).
Jaka największa liczba spełnia tę nierówność?
Dane
a=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 9.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=25
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)