Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=12
y_0=64
Odpowiedzi:
A. \left(13,\frac{1}{32}\right) B. \left(11,\frac{1}{128}\right)
C. \left(11,\frac{\sqrt{2}}{64\sqrt{2}}\right) D. \left(13,\frac{1}{64\sqrt{2}}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 » Funkcja f(x)=(10\cdot m-3)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. (-\infty,p)
C. \langle p, +\infty) D. \langle p, q\rangle
E. (p, q) F. (-\infty,p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{10}\right)^x.

Funkcja g(x)=f(x+3)-3:

Odpowiedzi:
A. nie ma miejsc zerowych B. ma dwa miejsca zerowe
C. ma jedno miejsce zerowe D. ma więcej niż dwa miejsca zerowe
Zadanie 4.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{13}}{169}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Do wykresu funkcji h(x)=a^x należy punkt P=\left(-\frac{1}{2},b\right).

Oblicz a.

Dane
b=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Dla jakich wartości parametru m dziedziną funkcji g(x)=\sqrt{ \log{ \left(x^2+4x+3m\right) } } jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=256
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm