Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 11:
Odpowiedzi:
A. \log_{5}{11} B. \log_{11}{25}
C. \frac{\log_{5}{11}}{2} D. \log_{5}{121}
E. \log_{11}{11} F. 11\cdot \log_{5}{121}
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{10}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 23\cdot \pi -72 B. 5^{-9}
C. 10\cdot \pi -32 D. \frac{\sqrt{\pi}}{7}
Zadanie 3.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. D B. C
C. A D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=10^x.

Funkcja określona wzorem h(x)=5+g(x+2) z prostą o równaniu y-8=0:

Odpowiedzi:
A. ma dokładnie jeden punkt wspólny B. nie ma punktów wspólnych
C. ma dokładnie dwa punkty wspólne D. ma nieskończenie wiele punktów wspólnych
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20323 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Rozwiąż równanie 9^{x^2-2ax+5+a^2}=27^{4x-2-4a}.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{x}{5}-\log_{x+2}{(-x+4)}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też największy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=13
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm