Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=-5
Odpowiedzi:
A. (-\infty, p) B. \langle p,+\infty)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. (p,+\infty) F. (-\infty, p)\cup(q,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-6x-4 \\y=7^{x+5}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=3^{-x}-7 ma postać:
Odpowiedzi:
A. (p,+\infty) B. (p, q)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. (-\infty, p)\cup(q, +\infty) F. \langle p, +\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=4^x.

Funkcja określona wzorem h(x)=7+g(x-2) z prostą o równaniu y-7=0:

Odpowiedzi:
A. nie ma punktów wspólnych B. ma dokładnie jeden punkt wspólny
C. ma nieskończenie wiele punktów wspólnych D. ma dokładnie dwa punkty wspólne
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=6
b=5
c=7
d=-4
e=15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Dla jakich wartości parametru m dziedziną funkcji g(x)=\sqrt{ \log{ \left(x^2+4x+3m\right) } } jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm