Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=1
Odpowiedzi:
A. (p,+\infty)
B. (-\infty, p\rangle
C. (p, q)
D. (-\infty, p)
E. \langle p,+\infty)
F. \langle p, q\rangle
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x . Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},3\right) .
Wówczas liczba
a jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
A. g(x)=8\cdot\left(\frac{1}{8}\right)^{x+1}
B. g(x)=\left(\frac{1}{8}\right)^{x}+2
C. g(x)=\left(\frac{1}{8}\right)^{x+2}
D. g(x)=64\cdot\left(\frac{1}{8}\right)^x
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=6^x .
Funkcja określona wzorem h(x)=6+g(x+4) z prostą o równaniu
y-8=0 :
Odpowiedzi:
A. ma dokładnie dwa punkty wspólne
B. ma nieskończenie wiele punktów wspólnych
C. nie ma punktów wspólnych
D. ma dokładnie jeden punkt wspólny
Zadanie 5. 1 pkt ⋅ Numer: pr-10159 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych należy do dziedziny funkcji określonej wzorem
g(x)=\log_{9}{(100-x^2)} ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=15
b=13
c=-5
d=5
e=3
f=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20304 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
f(x)=\log_{\frac{\sqrt{2}}{2}}{\left(-x^2+12x-20\right)}
.
Wyznacz
D_f .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Wyznacz f_{min} .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dane jest równanie
(k-1)^2x^2+(k-2)x+1=0 , gdzie
k\neq -1 . Funkcja
g
przyporządkowuje liczbie
k liczbę
g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}} , gdzie
x_1,x_2 są różnymi pierwiastkami tego równania.
Wyznacz
D_g=(a, b) .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Zbiorem wartości funkcji
g jest przedział
ZW_g=(\sqrt[3]{c},d) .
Podaj c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (2 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right| .
Oblicz f(1+\log_{2}{5}) .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż