Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
11:
Odpowiedzi:
|
A. \log_{5}{11}
|
B. \log_{11}{25}
|
|
C. \frac{\log_{5}{11}}{2}
|
D. \log_{5}{121}
|
|
E. \log_{11}{11}
|
F. 11\cdot \log_{5}{121}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{10}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 23\cdot \pi -72
|
B. 5^{-9}
|
|
C. 10\cdot \pi -32
|
D. \frac{\sqrt{\pi}}{7}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=10^x.
Funkcja określona wzorem h(x)=5+g(x+2) z prostą o równaniu
y-8=0:
Odpowiedzi:
|
A. ma dokładnie jeden punkt wspólny
|
B. nie ma punktów wspólnych
|
|
C. ma dokładnie dwa punkty wspólne
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dane są funkcje określone wzorami
f(x)=\log_{0,5}{(x-a)^2} oraz
g(x)=\log_{0,5}{|x-a|}.
Wyznacz największą odciętą punktów przecięcia się wykresów funkcji
f i g.
Dane
a=15
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20323 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Rozwiąż równanie
9^{x^2-2ax+5+a^2}=27^{4x-2-4a}.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20297 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\log_{x}{5}-\log_{x+2}{(-x+4)}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych
przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też
największy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Dane jest równanie
\left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem
m\in\mathbb{R}.
Wyznacz najmniejszą wartość m, dla której równanie to
ma dokładnie jedno rozwiązanie.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą dodatnią wartość
m, dla której
równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Wyznacz zbiór tych wartości parametru
m, dla których
równanie to ma dokładnie dwa rozwiązania.
Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 9.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=13
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)