Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a\cdot b=-1\frac{11}{16} B. a\cdot b=-3
C. a-b=3 D. a-b=1\frac{7}{36}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(4, 1296) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w dół B. dwie jednostki w górę
C. cztery jednostki w prawo D. cztery jednostki w lewo
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=6^x.

Funkcja określona wzorem h(x)=-3+g(x-2) z prostą o równaniu y+6=0:

Odpowiedzi:
A. nie ma punktów wspólnych B. ma dokładnie dwa punkty wspólne
C. ma nieskończenie wiele punktów wspólnych D. ma dokładnie jeden punkt wspólny
Zadanie 5.  1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20569 ⋅ Poprawnie: 48/61 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie: \left(\frac{4}{3}\right)^{x^2+ax}=\left(\frac{9}{16}\right)^{\frac{b}{2}x-2}\cdot (0,75)^{x^2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=4
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20553 ⋅ Poprawnie: 14/36 [38%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność 3^{3ax+1}-4\cdot 27^{ax-1}+9^{1,5ax-1} \lessdot 80 .

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Naszkicuj wykresy funkcji f(x)=2^x i g(x)=|f(x-a)-b|.

Podaj najmniejszą wartość funkcji g w przedziale \langle p,q\rangle.

Dane
a=-2
b=8
p=-2
q=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj największą wartość funkcji g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
b=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm