Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-\frac{7}{2}\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-6x-1 \\y=5^{x-1}\end{cases} .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{8}\right)^{x}+2
B. g(x)=8\cdot\left(\frac{1}{8}\right)^{x+1}
C. g(x)=64\cdot\left(\frac{1}{8}\right)^x
D. g(x)=\left(\frac{1}{8}\right)^{x+2}
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
6^{x^2}\cdot \sqrt{6}=6^{\frac{73}{2}}
oraz
\log_{\frac{1}{6}}{x}=-1 .
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=-1
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20576 ⋅ Poprawnie: 120/182 [65%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
2^{x+m}=\left(\frac{1}{8}\right)^{\frac{n}{3x}}
Podaj najmniejsze rozwiązanie tego równania.
Dane
m=-13
n=42
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20560 ⋅ Poprawnie: 26/46 [56%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{4}{25}\right)^{x+a}\cdot \left(\frac{125}{8}\right)^{x+a} \lessdot
\left(\frac{5}{2}\right)^{2x+2a+9}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Naszkicuj wykres funkcji
f(x)=\left|a^{2-x}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=7
b=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 9.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=6
b=216
c=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż