Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a-b=3 B. a\cdot b=-3
C. a-b=1\frac{7}{36} D. a\cdot b=-1\frac{11}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=-3
Odpowiedzi:
A. A=(-1,16) B. A=(-3,16)
C. A=(-1,-16) D. A=(-1,-4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{7}\right)^{x}+2 B. g(x)=\left(\frac{1}{7}\right)^{x+2}
C. g(x)=49\cdot\left(\frac{1}{7}\right)^x D. g(x)=\left(\frac{1}{7}\right)^{x}-2
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=5^x.

Funkcja określona wzorem h(x)=7+g(x+4) z prostą o równaniu y-8=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. ma dokładnie jeden punkt wspólny
C. ma dokładnie dwa punkty wspólne D. nie ma punktów wspólnych
Zadanie 5.  1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\log_{x}{(ax-1)}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20571 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż równanie: b^{x+a}\cdot \left(\frac{1}{b}\right)^{2x+2a+5}=b^3 .

Podaj rozwiązanie tego równania.

Dane
a=-1
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20301 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x}{x+2}}{(x^3-3x^2+4)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj długość najkrótszego z tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj sumę wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm