Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b.
Zbiór ZW_f ma postać:
Dane
b=-4
Odpowiedzi:
|
A. (p, q)
|
B. (-\infty, p\rangle
|
|
C. (-\infty, p)
|
D. (p,+\infty)
|
|
E. (-\infty, p)\cup(q,+\infty)
|
F. \langle p,+\infty)
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{3},6\right).
Wówczas liczba
a jest równa
\frac{1}{6^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{3-x}+1.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. \langle p, q\rangle
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. (-\infty,p)
|
|
E. (-\infty, p\rangle
|
F. \langle p, +\infty)
|
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-4}-239.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\log_{x}{(ax-1)}.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20576 ⋅ Poprawnie: 120/182 [65%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
2^{x+m}=\left(\frac{1}{8}\right)^{\frac{n}{3x}}
Podaj najmniejsze rozwiązanie tego równania.
Dane
m=-11
n=28
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20550 ⋅ Poprawnie: 17/25 [68%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są funkcje
f(x)=1-2^{x+a} i
g(x)=x^2+(2a-2)x+a^2-2a.
Rozwiąż graficznie nierówność
f(x)\leqslant g(x).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right|.
Oblicz f(1+\log_{2}{5}).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)