Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a-b=1\frac{7}{36} B. a\cdot b=-3
C. a\cdot b=-1\frac{11}{16} D. a-b=3
Zadanie 2.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji y=2-\frac{1}{3^x} nie przecina prostej:
Odpowiedzi:
A. y=3x B. x=\sqrt{10}
C. y=2-\sqrt{2} D. y=2+\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=4^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. 4^{-x}-3 B. -4^{x}
C. \left(\frac{1}{7}\right)^{x} D. -4^{-x}
Zadanie 4.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(2,-19).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=2
Odpowiedzi:
T/N : \left(\frac{1}{4}, -2\right) T/N : (1,0)
Zadanie 6.  2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: \left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}

Podaj rozwiązanie tego równania.

Dane
a=4
b=11
c=-1
d=3
e=5
f=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20302 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{x+2}{\frac{x^2-7x}{x^2+2x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dane jest równanie (k-1)^2x^2+(k-2)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm