Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-5\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-9x+3 \\y=2^{x-6}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=10^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. 10^{-x}-9 B. -10^{x}
C. \left(\frac{1}{7}\right)^{x} D. -10^{-x}
Zadanie 4.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(1,\frac{1}{2}\right) i B=\left(3,2\right).

Oblicz f(7).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 64^{\log_{8}{3}}=9 B. 512^{\log_{64}{3}}=27
C. 512^{\log_{8}{3}}=9 D. 64^{\log_{8}{3}}=27
Zadanie 6.  2 pkt ⋅ Numer: pr-20321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wiadomo, że 8^x=27 oraz 2^{x-2ay}=27.

Zapisz liczbę y w postaci p\cdot \log_{2}{\frac{1}{3}}. Podaj p.

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20302 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{x+2}{\frac{x^2-7x}{x^2+2x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/107 [13%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja g(x)=\left(2-\frac{a}{2}m^2\right)^x jest malejąca.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców tych przedziałów.

Dane
a=49
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm