Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-\frac{5}{2}\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=27 .
Wyznacz liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=5^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
A. -5^{x}
B. \left(\frac{1}{7}\right)^{x}
C. 5^{-x}-4
D. -5^{-x}
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(3,-44) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są funkcje określone wzorami
f(x)=\log_{0,5}{(x-a)^2} oraz
g(x)=\log_{0,5}{|x-a|} .
Wyznacz największą odciętą punktów przecięcia się wykresów funkcji
f i g .
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20556 ⋅ Poprawnie: 43/90 [47%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\frac{3}{2}\left(\sqrt[3]{\frac{2}{3}}\right)^{2x+2a+5} >
\left(\frac{9}{4}\right)^{x+a}
Wynik przedstaw w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dane jest równanie
(k-2)^2x^2+(k-3)x+1=0 , gdzie
k\neq -1 . Funkcja
g
przyporządkowuje liczbie
k liczbę
g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}} , gdzie
x_1,x_2 są różnymi pierwiastkami tego równania.
Wyznacz
D_g=(a, b) .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Zbiorem wartości funkcji
g jest przedział
ZW_g=(\sqrt[3]{c},d) .
Podaj c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (2 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 9.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż