Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
Dziedziną funkcji określonej wzorem
g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}}
jest zbiór postaci:
Dane
a=5
b=125
Odpowiedzi:
A. \langle p, q\rangle
B. (p,+\infty)
C. (-\infty, p\rangle
D. \langle p,+\infty)
E. (p, q)
F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji
y=-4-\frac{1}{8^x} nie przecina
prostej:
Odpowiedzi:
A. y=-4-\sqrt{2}
B. y=8x
C. x=\sqrt{10}
D. y=-4+\sqrt{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=7^x+1 .
Oblicz wartość funkcji określonej wzorem g(x)=f(x-3)
dla argumentu x=7 .
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-8}-23 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)}
i zapisz ją w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20314 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Miejscem zerowym funkcji
f(x)=\log_{p}{(x-q)}+r jest
liczba
1 , a do jej wykresu należy punkt
P=(-1,-1) . Wiedząc, że prosta
x=-2 jest asymptotą pionową wykresu tej funkcji,
wyznacz
p,q,r .
Podaj p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj q+r .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Naszkicuj wykres funkcji
f(x)=\left|a^{x+1}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=9
b=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż