Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
3:
Odpowiedzi:
|
A. 3\cdot \log_{5}{9}
|
B. \log_{3}{3}
|
|
C. \log_{5}{3}
|
D. \log_{3}{25}
|
|
E. \log_{5}{9}
|
F. \frac{\log_{5}{3}}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},6\right).
Wówczas liczba
a jest równa
\frac{1}{6^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=6^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-5)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
7^{x^2}\cdot \sqrt{7}=7^{\frac{99}{2}}
oraz
\log_{\frac{1}{7}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. 36^{\log_{6}{3}}=27
|
B. 216^{\log_{36}{3}}=27
|
|
C. 216^{\log_{6}{3}}=9
|
D. 36^{\log_{6}{3}}=9
|
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20325 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie
9^{\frac{x-a}{2}-1}+3^{x-a}=7290
.
Podaj największe z rozwiązań.
Dane
a=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20295 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
h(x)=\log_{\frac{-x}{x+5}}{\frac{x^2+5x+4}{x+1}}
.
Wyznacz
D_h.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj sumę tych wszystkich końców przedziałów, które nie są liczbami
całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a.
Punkt
B=(2, 0) należy do wykresu funkcji
f.
Podaj m.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
b=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)