Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b.
Zbiór ZW_f ma postać:
Dane
b=8
Odpowiedzi:
|
A. (p, q)
|
B. (p,+\infty)
|
|
C. \langle p, q\rangle
|
D. \langle p,+\infty)
|
|
E. (-\infty, p\rangle
|
F. (-\infty, p)\cup(q,+\infty)
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wykres funkcji
y=-1-\frac{1}{10^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=-1-\sqrt{2}
|
B. y=-1+\sqrt{2}
|
|
C. x=\sqrt{5}
|
D. y=10x
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=10^x.
Funkcja określona wzorem h(x)=-7+g(x+1) z prostą o równaniu
y+8=0:
Odpowiedzi:
|
A. ma dokładnie jeden punkt wspólny
|
B. ma nieskończenie wiele punktów wspólnych
|
|
C. ma dokładnie dwa punkty wspólne
|
D. nie ma punktów wspólnych
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p, dla której prawdziwa jest równość
\log_{\sqrt{2}}{(2+\log_{2}{p})}=0.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20572 ⋅ Poprawnie: 109/157 [69%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Rozwiązanie równania
7x-3^{54}=9^{28}-3^{11}\cdot 9^{22}
zapisz w postaci potęgi, której podstawą jest liczba pierwsza.
Podaj wykładnik tej potęgi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20297 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\log_{x+1}{5}-\log_{x+3}{(-x+3)}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych
przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też
największy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6}.
Rozwiąż nierówność
f(x)\leqslant g(x).
Jaka największa liczba spełnia tę nierówność?
Dane
a=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)