Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3).
Wówczas:
Odpowiedzi:
|
A. a-b=1\frac{7}{36}
|
B. a\cdot b=-3
|
|
C. a-b=3
|
D. a\cdot b=-1\frac{11}{16}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(11\cdot m+6)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. \langle p, q\rangle
|
|
C. (-\infty,p)
|
D. \langle p, +\infty)
|
|
E. (p, q)
|
F. (-\infty,p\rangle
|
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zbiór wartości funkcji
f(x)=8^x+\sqrt{17}
zawiera liczbę:
Odpowiedzi:
|
A. \sqrt{17}+4
|
B. \frac{\sqrt{17}}{6}
|
|
C. -18
|
D. \sqrt{17}-5
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(4,4\right) i
B=\left(5,8\right).
Oblicz f(9).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10154 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{bx} powstaje z przesunięcia
wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien wektor
\vec{u}=[p,q].
Wyznacz liczby p i q.
Dane
a=5
b=15625
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20315 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Rozwiąż graficznie nierówność
\log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1
w liczbach dodatnich.
Podaj największą z liczb spełniających tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Dana jest funkcja
g(x)=|2^{x-1}-3| oraz
x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.
Oblicz g(x_0).
Dane
a=64
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Wyznacz te wartości
x, dla których funkcja
g przyjmuje wartości większe od
g(x_0).
Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g.
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x).
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=128
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)