Podgląd testu : lo2@sp-fun-wyk-log-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=10
y_0=32
Odpowiedzi:
A. \left(9,\frac{\sqrt{2}}{32\sqrt{2}}\right)
B. \left(9,\frac{1}{64}\right)
C. \left(11,\frac{1}{32\sqrt{2}}\right)
D. \left(11,\frac{1}{16}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji
y=6-\frac{1}{6^x} nie przecina
prostej:
Odpowiedzi:
A. x=\sqrt{10}
B. y=6x
C. y=6+\sqrt{2}
D. y=6-\sqrt{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=6^{-x}-9 ma postać:
Odpowiedzi:
A. (p, q)
B. (-\infty, p)\cup(q, +\infty)
C. (p,+\infty)
D. (-\infty, p\rangle
E. (-\infty, p)
F. \langle p, q\rangle
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x , gdzie
a>0 ,
należą punkty o współrzędnych
A=\left(3,2\right) i
B=\left(5,8\right) .
Oblicz f(7) .
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=1
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right) .
Podaj p .
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20307 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozwiąż równanie
\log_{2}{(3-\log_{9}{x})}=1 .
Podaj największe z rozwiązań.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3 .
Wyznacz a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x-1|}+7 .
Podaj najmniejszą wartość funkcji g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right| .
Oblicz f(1+\log_{2}{5}) .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż