Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=8
y_0=16
Odpowiedzi:
A. \left(9,\frac{1}{16\sqrt{2}}\right) B. \left(7,\frac{1}{32}\right)
C. \left(9,\frac{1}{8}\right) D. \left(7,\frac{\sqrt{2}}{16\sqrt{2}}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{5}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 5^{-3} B. \frac{\sqrt{\pi}}{6}
C. 15\cdot \pi -47 D. 12\cdot \pi -38
Zadanie 3.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=36\cdot\left(\frac{1}{6}\right)^x B. g(x)=6\cdot\left(\frac{1}{6}\right)^{x+1}
C. g(x)=\left(\frac{1}{6}\right)^{x+2} D. g(x)=\left(\frac{1}{6}\right)^{x}+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(2,1\right) i B=\left(3,2\right).

Oblicz f(8).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 16^{\log_{4}{3}}=9 B. 64^{\log_{16}{3}}=27
C. 16^{\log_{4}{3}}=27 D. 64^{\log_{4}{3}}=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż równanie \left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1} .

Podaj największe z rozwiązań.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20295 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja h(x)=\log_{\frac{-x}{x+5}}{\frac{x^2+5x+4}{x+1}} . Wyznacz D_h.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj sumę tych wszystkich końców przedziałów, które nie są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Naszkicuj wykres funkcji f(x)=\left|a^{x+1}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=5
b=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm