Podgląd testu : lo2@sp-fun-wyk-log-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b.
Zbiór ZW_f ma postać:
Dane
b=-7
Odpowiedzi:
|
A. (p, q)
|
B. \langle p, q\rangle
|
|
C. (-\infty, p)
|
D. \langle p,+\infty)
|
|
E. (-\infty, p\rangle
|
F. (p,+\infty)
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{2},7\right).
Wówczas liczba
a jest równa
\frac{1}{7^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=2^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-5)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
3^{x^2}\cdot \sqrt{3}=3^{\frac{19}{2}}
oraz
\log_{\frac{1}{3}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem
f(x)=\log_{a}{x}:
Dane
a=2
Odpowiedzi:
|
T/N : (8, 3)
|
T/N : \left(\frac{1}{4}, -2\right)
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20564 ⋅ Poprawnie: 18/43 [41%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
3^{\frac{2x}{a}}+\left(\frac{27}{4}\right)^{-1}+9^{\frac{x}{a}}=2\cdot 3^{\frac{2x}{a}+1}
Podaj rozwiązanie tego równania.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20309 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
\log_{3}{x}=2-\log_{\frac{1}{3}}{2}.
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)