Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 8:
Odpowiedzi:
A. \log_{8}{8} B. \log_{3}{8}
C. \frac{\log_{3}{8}}{2} D. 8\cdot \log_{3}{64}
E. \log_{8}{9} F. \log_{3}{64}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(4, 625) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=5^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. -5^{x} B. 5^{-x}-4
C. \left(\frac{1}{7}\right)^{x} D. -5^{-x}
Zadanie 4.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-4}-725.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=3
Odpowiedzi:
T/N : (1,0) T/N : (27, 3)
Zadanie 6.  2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}

Podaj rozwiązanie tego równania.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20556 ⋅ Poprawnie: 43/90 [47%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: \frac{3}{2}\left(\sqrt[3]{\frac{2}{3}}\right)^{2x+2a+5} > \left(\frac{9}{4}\right)^{x+a}

Wynik przedstaw w postaci przedziału liczbowego. Podaj prawy koniec tego przedziału.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Wykres funkcji f(x)=a^x zawiera punkt A=\left(-\frac{3}{2},\frac{1}{8}\right).

Podaj a.

Dane
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=32
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm