Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dziedziną funkcji określonej wzorem g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}} jest zbiór postaci:
Dane
a=4
b=256
Odpowiedzi:
A. \langle p,+\infty) B. (p, q)
C. (p,+\infty) D. (-\infty, p\rangle
E. \langle p, q\rangle F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(2\sqrt{2}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. \frac{\sqrt{\pi}}{7} B. 10\cdot \pi -32
C. 5^{-1} D. 17\cdot \pi -53
Zadanie 3.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=6^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-3) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(5,-33).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych funkcji określonej wzorem g(x)=\log_{2\sqrt{2}}{(|x|-2)}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wiadomo, że 8^x=27 oraz 2^{x-2ay}=27.

Zapisz liczbę y w postaci p\cdot \log_{2}{\frac{1}{3}}. Podaj p.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20316 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Naszkicuj wykres funkcji h(x)=\log_{3}{(3x+12)}. Odczytaj z wykresu rozwiązanie nierówności h(x)\lessdot 2.

Podaj długość rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Naszkicuj wykres funkcji f(x)=\left|a^{2-x}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=8
b=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dana jest funkcja f(x)=\left|2^{x-1}-3\right|.

Oblicz f(1+\log_{2}{5}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność f(x) > f(1+\log_{2}{5}).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm