Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dziedziną funkcji określonej wzorem g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}} jest zbiór postaci:
Dane
a=5
b=125
Odpowiedzi:
A. \langle p,+\infty) B. (p, q)
C. (-\infty, p\rangle D. (-\infty, p)
E. \langle p, q\rangle F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=3^{8x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(-\frac{1}{8},\frac{1}{3}\right) B. A=(0,1)
C. A=\left(\frac{2}{8},9\right) D. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{625}\cdot 5^x otrzymamy przesuwając wykres funkcji g(x)=5^x o:
Odpowiedzi:
A. cztery jednostki w dół B. dwie jednostki w górę
C. cztery jednostki w prawo D. cztery jednostki w lewo
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=9^x.

Funkcja określona wzorem h(x)=3+g(x+5) z prostą o równaniu y-6=0:

Odpowiedzi:
A. ma dokładnie dwa punkty wspólne B. ma dokładnie jeden punkt wspólny
C. ma nieskończenie wiele punktów wspólnych D. nie ma punktów wspólnych
Zadanie 5.  1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Rozwiązaniem nierówności 7^{x+a}\leqslant 3 jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci \log_{p}{b}+c, gdzie p,b,c\in\mathbb{Z}.

Podaj wartości parametrów p, b i c.

Dane
a=6
Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20570 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: (7\sqrt{7})^{ax+b}=\left(\frac{49}{\sqrt[3]{7}}\right)^{cx+d} .

Podaj rozwiązanie tego równania.

Dane
a=-4
b=2
c=8
d=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: 4\cdot \left(\sqrt{8}\right)^{ax}\leqslant \left(\frac{2\sqrt{2}}{16}\right)^{-2-ax} .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=9
b=729
c=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm