Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=18
y_0=512
Odpowiedzi:
A. \left(17,\frac{1}{1024}\right) B. \left(19,\frac{1}{256}\right)
C. \left(17,\frac{\sqrt{2}}{512\sqrt{2}}\right) D. \left(19,\frac{1}{512\sqrt{2}}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-9x-5 \\y=6^{x-1}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{15}\right)^x.

Funkcja g(x)=f(x+7)+1:

Odpowiedzi:
A. ma więcej niż dwa miejsca zerowe B. ma jedno miejsce zerowe
C. nie ma miejsc zerowych D. ma dwa miejsca zerowe
Zadanie 4.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{15}}{225}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10159 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile liczb całkowitych należy do dziedziny funkcji określonej wzorem g(x)=\log_{14}{(225-x^2)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20567 ⋅ Poprawnie: 24/52 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie: \frac{a^{x^3}}{(a^3)^{3x}}=(a^2)^{9-x^2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20319 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\frac{1}{4}\cdot 4^{2x+a}-b przyjmuje wartości większe od c?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
b=15
c=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Naszkicuj wykres funkcji f(x)=\left|a^{2-x}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=10
b=11
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm