Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=4
y_0=4
Odpowiedzi:
A. \left(3,\frac{1}{8}\right) B. \left(5,\frac{1}{4\sqrt{2}}\right)
C. \left(5,\frac{1}{2}\right) D. \left(3,\frac{\sqrt{2}}{4\sqrt{2}}\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=-1
Odpowiedzi:
A. A=(1,-2) B. A=(1,4)
C. A=(-1,-4) D. A=(1,-4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{3}\right)^x.

Funkcja g(x)=f(x-1)-1:

Odpowiedzi:
A. ma więcej niż dwa miejsca zerowe B. ma dwa miejsca zerowe
C. nie ma miejsc zerowych D. ma jedno miejsce zerowe
Zadanie 4.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 3^{x^2}\cdot \sqrt{3}=3^{\frac{19}{2}} oraz \log_{\frac{1}{3}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=2
Odpowiedzi:
T/N : (8, 3) T/N : (32, 4)
Zadanie 6.  2 pkt ⋅ Numer: pr-20500 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Punkt P=\left(p,\frac{1}{q}\right) należy do wykresu funkcji wykładniczej f(x)=a^x. Oblicz wartość tej funkcji dla argumentu \frac{m}{2}.

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Dane
p=8
q=81
m=-7
Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 7.  2 pkt ⋅ Numer: pr-20300 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x-8}{x-4}}{\left(x^3-22x^2+153x-324\right)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Naszkicuj wykresy funkcji f(x)=2^x i g(x)=|f(x-a)-b|.

Podaj najmniejszą wartość funkcji g w przedziale \langle p,q\rangle.

Dane
a=-3
b=32
p=-3
q=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj największą wartość funkcji g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dana jest funkcja f(x)=\left|2^{x-1}-3\right|.

Oblicz f(1+\log_{2}{5}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiąż nierówność f(x) > f(1+\log_{2}{5}).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm