Podgląd testu : lo2@sp-fun-wyk-log-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-3\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(8\cdot m-7)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (-\infty,p\rangle
|
B. (-\infty,p)
|
|
C. (p, q)
|
D. (p, +\infty)
|
|
E. \langle p, q\rangle
|
F. \langle p, +\infty)
|
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=49\cdot\left(\frac{1}{7}\right)^x
|
B. g(x)=\left(\frac{1}{7}\right)^{x}-2
|
|
C. g(x)=\left(\frac{1}{7}\right)^{x+2}
|
D. g(x)=\left(\frac{1}{7}\right)^{x}+2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{2}}{32}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dane są funkcje określone wzorami
f(x)=\log_{0,5}{(x-a)^2} oraz
g(x)=\log_{0,5}{|x-a|}.
Wyznacz największą odciętą punktów przecięcia się wykresów funkcji
f i g.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20578 ⋅ Poprawnie: 23/39 [58%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
2^{2x+2a-1}+4^{x+a}=24
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20569 ⋅ Poprawnie: 48/61 [78%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie:
\left(\frac{4}{3}\right)^{x^2+ax}=\left(\frac{9}{16}\right)^{\frac{b}{2}x-2}\cdot (0,75)^{x^2}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20553 ⋅ Poprawnie: 14/36 [38%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
3^{3ax+1}-4\cdot 27^{ax-1}+9^{1,5ax-1} \lessdot 80
.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20313 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Dana jest funkcja
g(x)=x^2+\log_{1024}{x}\cdot |2\log_{x}{32}|-4
.
Wyznacz
ZW_g.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość najkrótszego z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a.
Punkt
B=(2, 0) należy do wykresu funkcji
f.
Podaj m.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 13. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 13.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
b=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)