Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3) .
Wówczas:
Odpowiedzi:
A. a\cdot b=-3
B. a\cdot b=-1\frac{11}{16}
C. a-b=1\frac{7}{36}
D. a-b=3
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x . Punkt
A=(3, 64) należy do wykresu tej funkcji.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=2^{-x}-6 ma postać:
Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty)
B. (-\infty, p)
C. \langle p, q\rangle
D. (p, q)
E. \langle p, +\infty)
F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(2,-25) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są funkcje określone wzorami
f(x)=\log_{0,5}{(x-a)^2} oraz
g(x)=\log_{0,5}{|x-a|} .
Wyznacz największą odciętą punktów przecięcia się wykresów funkcji
f i g .
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=-2
b=3
c=-1
d=8
e=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkt
A=\left(3,\frac{1}{p}\right) należy do
wykresu funkcji
g(x)=a^x , gdzie
a > 0 .
Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1 .
Dane
p=8
q=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji
h .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20556 ⋅ Poprawnie: 43/90 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność:
\frac{3}{2}\left(\sqrt[3]{\frac{2}{3}}\right)^{2x+2a+5} >
\left(\frac{9}{4}\right)^{x+a}
Wynik przedstaw w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20308 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
1-3x=\log_{3}{m} ma rozwiązanie dodatnie?
Podaj najmniejsze dodatnie m , które nie spełnia
tego warunku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Naszkicuj wykresy funkcji
f(x)=2^x i
g(x)=|f(x-a)-b| .
Podaj najmniejszą wartość funkcji g w przedziale
\langle p,q\rangle .
Dane
a=-4
b=32
p=-4
q=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największą wartość funkcji
g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj miejsce zerowe funkcji
g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dane jest równanie
(k-2)^2x^2+(k-3)x+1=0 , gdzie
k\neq -1 . Funkcja
g
przyporządkowuje liczbie
k liczbę
g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}} , gdzie
x_1,x_2 są różnymi pierwiastkami tego równania.
Wyznacz
D_g=(a, b) .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Zbiorem wartości funkcji
g jest przedział
ZW_g=(\sqrt[3]{c},d) .
Podaj c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (2 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż