Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-2\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(3, 64) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{4}\right)^{x+2} B. g(x)=\left(\frac{1}{4}\right)^{x}+2
C. g(x)=\left(\frac{1}{4}\right)^{x}-2 D. g(x)=16\cdot\left(\frac{1}{4}\right)^x
Zadanie 4.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-3}-77.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 9^{\log_{3}{3}}=9 B. 27^{\log_{9}{3}}=27
C. 27^{\log_{3}{3}}=9 D. 9^{\log_{3}{3}}=27
Zadanie 6.  2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=1
b=-2
c=2
d=2
e=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wiadomo, że 8^x=27 oraz 2^{x-2ay}=27.

Zapisz liczbę y w postaci p\cdot \log_{2}{\frac{1}{3}}. Podaj p.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20549 ⋅ Poprawnie: 24/49 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność: \frac{3^{2x+a}}{9^{\frac{x+b}{2}}} > \left(\frac{1}{3}\right)^{x^2}

Podaj najmniejszą liczbę, która nie spełnia tej nierówności.

Dane
a=-8
b=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{x-8}{5}-\log_{x-6}{(-x+12)}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też największy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wykres funkcji f(x)=c^x zawiera punkt A=(2\log_{2}{a},b).

Podaj c.

Dane
a=5
b=25
q=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|f(x+1)-q|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dane są funkcje f(x)=1-2^{x+a} i g(x)=x^2+(2a-2)x+a^2-2a. Rozwiąż graficznie nierówność f(x)\leqslant g(x).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm