Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a\cdot b=-3 B. a\cdot b=-1\frac{11}{16}
C. a-b=1\frac{7}{36} D. a-b=3
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(3, 64) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=2^{-x}-6 ma postać:
Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (-\infty, p)
C. \langle p, q\rangle D. (p, q)
E. \langle p, +\infty) F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(2,-25).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-2
b=3
c=-1
d=8
e=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Punkt A=\left(3,\frac{1}{p}\right) należy do wykresu funkcji g(x)=a^x, gdzie a > 0.

Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1.

Dane
p=8
q=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji h.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20556 ⋅ Poprawnie: 43/90 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność: \frac{3}{2}\left(\sqrt[3]{\frac{2}{3}}\right)^{2x+2a+5} > \left(\frac{9}{4}\right)^{x+a}

Wynik przedstaw w postaci przedziału liczbowego. Podaj prawy koniec tego przedziału.

Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20308 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru m równanie 1-3x=\log_{3}{m} ma rozwiązanie dodatnie?

Podaj najmniejsze dodatnie m, które nie spełnia tego warunku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Naszkicuj wykresy funkcji f(x)=2^x i g(x)=|f(x-a)-b|.

Podaj najmniejszą wartość funkcji g w przedziale \langle p,q\rangle.

Dane
a=-4
b=32
p=-4
q=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największą wartość funkcji g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dane jest równanie (k-2)^2x^2+(k-3)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm