Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=-7
Odpowiedzi:
A. (p,+\infty)
B. (-\infty, p)
C. (-\infty, p\rangle
D. (p, q)
E. \langle p, q\rangle
F. \langle p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=8 .
Wyznacz liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{16}\cdot 2^x otrzymamy
przesuwając wykres funkcji
g(x)=2^x o:
Odpowiedzi:
A. cztery jednostki w lewo
B. cztery jednostki w prawo
C. dwie jednostki w górę
D. cztery jednostki w dół
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-2}-5 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są funkcje określone wzorami
f(x)=\log_{0,5}{(x-a)^2} oraz
g(x)=\log_{0,5}{|x-a|} .
Wyznacz największą odciętą punktów przecięcia się wykresów funkcji
f i g .
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}
Podaj rozwiązanie tego równania.
Dane
a=-12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20571 ⋅ Poprawnie: 33/50 [66%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozwiąż równanie:
b^{x+a}\cdot \left(\frac{1}{b}\right)^{2x+2a+5}=b^3
.
Podaj rozwiązanie tego równania.
Dane
a=-7
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20554 ⋅ Poprawnie: 29/60 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{x-a+1}+\left(\frac{1}{3}\right)^{x-a}\leqslant 4
.
Odpowiedź zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20311 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Rozwiąż równanie
\log_{2}{x}-\log_{0,5}{x}=-2\log_{0,5}{5} .
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
g(x)=|2^{x-1}-3| oraz
x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2} .
Oblicz g(x_0) .
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Wyznacz te wartości
x , dla których funkcja
g przyjmuje wartości większe od
g(x_0) .
Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Naszkicuj wykres funkcji
f(x)=\left|a^{x+1}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=3
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a , a funkcja
f
określona jest następująco:
f(x)=g(-x) .
Wyznacz m .
Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
» Wykres funkcji
f(x)=\frac{2^{x-1}-a}{4} jest
symetryczny względem osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g . Rozwiąż nierówność
g(x) \lessdot 0 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb całkowitych z przedziału
(-10,10)
spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż