Podgląd testu : lo2@sp-fun-wyk-log-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=2
Odpowiedzi:
|
A. (-\infty, p)
|
B. (p, q)
|
|
C. (p,+\infty)
|
D. \langle p,+\infty)
|
|
E. \langle p, q\rangle
|
F. (-\infty, p\rangle
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{7}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{3}
|
B. 5^{-4}
|
|
C. 7\cdot \pi -22
|
D. 12\cdot \pi -37
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=6^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-2)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(5,-44).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\log_{x}{(ax-1)}.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Dane
a=6
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}
Podaj rozwiązanie tego równania.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right).
Podaj p.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dla jakich argumentów funkcja
f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości
większe niż funkcja
g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?
Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20315 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Rozwiąż graficznie nierówność
\log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1
w liczbach dodatnich.
Podaj największą z liczb spełniających tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6}.
Rozwiąż nierówność
f(x)\leqslant g(x).
Jaka największa liczba spełnia tę nierówność?
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 12.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=19
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 13. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 13.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
b=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)