Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=2
Odpowiedzi:
A. (-\infty, p) B. (p, q)
C. (p,+\infty) D. \langle p,+\infty)
E. \langle p, q\rangle F. (-\infty, p\rangle
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{7}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. \frac{\sqrt{\pi}}{3} B. 5^{-4}
C. 7\cdot \pi -22 D. 12\cdot \pi -37
Zadanie 3.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=6^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-2) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(5,-44).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\log_{x}{(ax-1)}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Dane
a=6
Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Rozwiąż równanie: 7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}

Podaj rozwiązanie tego równania.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do wykresu funkcji f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty P=(-2,p) i Q=\left(q,\frac{1}{a}\right).

Podaj p.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakich argumentów funkcja f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości większe niż funkcja g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?

Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego przedziału.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20315 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Rozwiąż graficznie nierówność \log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1 w liczbach dodatnich.

Podaj największą z liczb spełniających tę nierówność.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane są funkcje f(x)=2^{ax-4} i g(x)=5-\left(\frac{1}{2}\right)^{ax-6}. Rozwiąż nierówność f(x)\leqslant g(x).

Jaka największa liczba spełnia tę nierówność?

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=19
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm