Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=14
y_0=128
Odpowiedzi:
A. \left(15,\frac{1}{64}\right)
B. \left(15,\frac{1}{128\sqrt{2}}\right)
C. \left(13,\frac{1}{256}\right)
D. \left(13,\frac{\sqrt{2}}{128\sqrt{2}}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x . Punkt
A=(4, 2401) należy do wykresu tej funkcji.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=7^x+1 .
Oblicz wartość funkcji określonej wzorem g(x)=f(x-5)
dla argumentu x=7 .
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x , gdzie
a>0 ,
należą punkty o współrzędnych
A=\left(5,8\right) i
B=\left(2,1\right) .
Oblicz f(6) .
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=5
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=16
b=7
c=-1
d=3
e=2
f=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20325 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
9^{\frac{x-a}{2}-1}+3^{x-a}=7290
.
Podaj największe z rozwiązań.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20560 ⋅ Poprawnie: 26/46 [56%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{4}{25}\right)^{x+a}\cdot \left(\frac{125}{8}\right)^{x+a} \lessdot
\left(\frac{5}{2}\right)^{2x+2a+9}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20312 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Do wykresu rosnącej funkcji logarytmicznej należy punkt
A=(2,1) .
Wyznacz wzór tej funkcji f(x)=\log_{a}{x} .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Narysuj wykres funkcji
g(x)=|f(x)-2| .
Zapisz w postaci przedziału zbiór tych argumentów, dla których wartości funkcji
g są nie mniejsze od wartości funkcji
f .
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dane jest równanie
\left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem
m\in\mathbb{R} .
Wyznacz najmniejszą wartość m , dla której równanie to
ma dokładnie jedno rozwiązanie.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , dla której
równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to ma dokładnie dwa rozwiązania.
Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3 .
Wyznacz a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x-5|}+5 .
Podaj najmniejszą wartość funkcji g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a , a funkcja
f
określona jest następująco:
f(x)=g(-x) .
Wyznacz m .
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right| .
Oblicz f(1+\log_{2}{5}) .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż