Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-5\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=3^{8x} .
Do jej wykresu nie należy punkt:
Odpowiedzi:
A. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
B. A=(0,1)
C. A=\left(\frac{4}{8},81\right)
D. A=\left(-\frac{1}{8},\frac{1}{3}\right)
Zadanie 3. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=9^{-x}-8 ma postać:
Odpowiedzi:
A. (p,+\infty)
B. \langle p, +\infty)
C. (-\infty, p)
D. (-\infty, p\rangle
E. (p, q)
F. \langle p, q\rangle
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=10^x .
Funkcja określona wzorem h(x)=5+g(x-4) z prostą o równaniu
y-5=0 :
Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych
B. ma dokładnie jeden punkt wspólny
C. nie ma punktów wspólnych
D. ma dokładnie dwa punkty wspólne
Zadanie 5. 1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji
h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)} ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=-8
b=7
c=-7
d=2
e=11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20324 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
\left(\frac{2}{5}\right)^{x+a}\cdot 2,5^{-x+3-a}=\frac{4}{25}
.
Podaj największe z rozwiązań.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
\left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=7
b=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Ile liczb całkowitych z przedziału z przedziału
\langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20312 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Do wykresu rosnącej funkcji logarytmicznej należy punkt
A=(2,1) .
Wyznacz wzór tej funkcji f(x)=\log_{a}{x} .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Narysuj wykres funkcji
g(x)=|f(x)-2| .
Zapisz w postaci przedziału zbiór tych argumentów, dla których wartości funkcji
g są nie mniejsze od wartości funkcji
f .
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
g(x)=|2^{x-1}-3| oraz
x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2} .
Oblicz g(x_0) .
Dane
a=256
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Wyznacz te wartości
x , dla których funkcja
g przyjmuje wartości większe od
g(x_0) .
Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Naszkicuj wykres funkcji
f(x)=\left|a^{2-x}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=10
b=11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=22
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=1024
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż