Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-\frac{9}{2}\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=3^{8x} .
Do jej wykresu nie należy punkt:
Odpowiedzi:
A. A=\left(-\frac{1}{8},\frac{1}{3}\right)
B. A=\left(\frac{1}{8},3\right)
C. A=(0,1)
D. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
Zadanie 3. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=8^{-x}-4 ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (p, q)
C. \langle p, +\infty)
D. (-\infty, p)
E. \langle p, q\rangle
F. (-\infty, p\rangle
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-8}-23 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji
h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)} ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=-7
b=-1
c=-6
d=3
e=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20325 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
9^{\frac{x-a}{2}-1}+3^{x-a}=7290
.
Podaj największe z rozwiązań.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20557 ⋅ Poprawnie: 20/40 [50%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{1}{81}\right)^{|x+a|} > \left(3\sqrt[3]{3}\right)^3
.
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20313 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dana jest funkcja
g(x)=x^2+\log_{1024}{x}\cdot |2\log_{x}{32}|-4
.
Wyznacz
ZW_g .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość najkrótszego z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Naszkicuj wykresy funkcji
f(x)=2^x i
g(x)=|f(x-a)-b| .
Podaj najmniejszą wartość funkcji g w przedziale
\langle p,q\rangle .
Dane
a=2
b=16
p=2
q=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największą wartość funkcji
g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj miejsce zerowe funkcji
g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a .
Punkt
B=(2, 0) należy do wykresu funkcji
f .
Podaj m .
Dane
a=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p ,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
» Wykres funkcji
f(x)=\frac{2^{x-1}-a}{4} jest
symetryczny względem osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g . Rozwiąż nierówność
g(x) \lessdot 0 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=512
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb całkowitych z przedziału
(-10,10)
spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż