Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{1}{0,6^{|x|}}+b .
Zbiór ZW_f ma postać:
Dane
b=-7
Odpowiedzi:
A. (-\infty, p)\cup(q,+\infty)
B. (-\infty, p\rangle
C. (-\infty, p)
D. \langle p, q\rangle
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
g(x)=4^{2x+1} przyjmuje wartość:
Odpowiedzi:
A. -\frac{\pi}{2}
B. -\sqrt{7}
C. \frac{\sqrt{5}}{5}
D. -\frac{1}{7}
Zadanie 3. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=3^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
A. -3^{-x}
B. 3^{-x}-2
C. -3^{x}
D. \left(\frac{1}{7}\right)^{x}
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(2,-31) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)}
i zapisz ją w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}
Podaj rozwiązanie tego równania.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkt
A=\left(3,\frac{1}{p}\right) należy do
wykresu funkcji
g(x)=a^x , gdzie
a > 0 .
Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1 .
Dane
p=8
q=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji
h .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20319 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\frac{1}{4}\cdot 4^{2x+a}-b przyjmuje wartości
większe od
c ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-4
b=255
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20308 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
1-3x=\log_{3}{m} ma rozwiązanie dodatnie?
Podaj najmniejsze dodatnie m , które nie spełnia
tego warunku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Naszkicuj wykresy funkcji
f(x)=2^x i
g(x)=|f(x-a)-b| .
Podaj najmniejszą wartość funkcji g w przedziale
\langle p,q\rangle .
Dane
a=-4
b=16
p=-4
q=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największą wartość funkcji
g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj miejsce zerowe funkcji
g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dane jest równanie
(k-2)^2x^2+(k-3)x+1=0 , gdzie
k\neq -1 . Funkcja
g
przyporządkowuje liczbie
k liczbę
g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}} , gdzie
x_1,x_2 są różnymi pierwiastkami tego równania.
Wyznacz
D_g=(a, b) .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Zbiorem wartości funkcji
g jest przedział
ZW_g=(\sqrt[3]{c},d) .
Podaj c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (2 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=2
b=8
c=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
b=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż