Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-2\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja
h(x)=(-2m-4)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty, p)
B. (p, q)
C. (p, +\infty)
D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty)
F. (-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{-4-x}-5 .
Zbiór ZW_g ma postać:
Odpowiedzi:
A. \langle p, +\infty)
B. \langle p, q\rangle
C. (p, q)
D. (-\infty, p)\cup(q, +\infty)
E. (-\infty, p\rangle
F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=6 , jeśli
f(x)=5^{2x} , zachodzi dla
x=-\log_{5}{p} .
Podaj liczbę p .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p , dla której prawdziwa jest równość
\log_{\sqrt{2}}{(2+\log_{2}{p})}=0 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}
Podaj rozwiązanie tego równania.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkt
A=\left(3,\frac{1}{p}\right) należy do
wykresu funkcji
g(x)=a^x , gdzie
a > 0 .
Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1 .
Dane
p=8
q=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji
h .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20317 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność
3^{6ax}-4\cdot 27^{2ax-\frac{4}{3}}+9^{3ax-\frac{3}{2}} \lessdot 80
.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
dziedziną funkcji
g(x)=\log{
\left(
\frac{m}{2x^2+2mx+\frac{m}{2}+3}
\right)
}
.
jest zbiór
\mathbb{R} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
f(x)=a^x zawiera punkt
A=\left(-\frac{3}{2},\frac{1}{8}\right) .
Podaj a .
Dane
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|b-f(x-1)| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6} .
Rozwiąż nierówność
f(x)\leqslant g(x) .
Jaka największa liczba spełnia tę nierówność?
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=3
b=27
c=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
» Wykres funkcji
f(x)=\frac{2^{x-1}-a}{4} jest
symetryczny względem osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g . Rozwiąż nierówność
g(x) \lessdot 0 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb całkowitych z przedziału
(-10,10)
spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż