Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-5\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=3^{8x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(-\frac{1}{2},-\frac{1}{81}\right) B. A=(0,1)
C. A=\left(\frac{4}{8},81\right) D. A=\left(-\frac{1}{8},\frac{1}{3}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=9^{-x}-8 ma postać:
Odpowiedzi:
A. (p,+\infty) B. \langle p, +\infty)
C. (-\infty, p) D. (-\infty, p\rangle
E. (p, q) F. \langle p, q\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=10^x.

Funkcja określona wzorem h(x)=5+g(x-4) z prostą o równaniu y-5=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. ma dokładnie jeden punkt wspólny
C. nie ma punktów wspólnych D. ma dokładnie dwa punkty wspólne
Zadanie 5.  1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-8
b=7
c=-7
d=2
e=11
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20324 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie \left(\frac{2}{5}\right)^{x+a}\cdot 2,5^{-x+3-a}=\frac{4}{25} .

Podaj największe z rozwiązań.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność \left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3 .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=7
b=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych z przedziału z przedziału \langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20312 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Do wykresu rosnącej funkcji logarytmicznej należy punkt A=(2,1).

Wyznacz wzór tej funkcji f(x)=\log_{a}{x}. Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Narysuj wykres funkcji g(x)=|f(x)-2|. Zapisz w postaci przedziału zbiór tych argumentów, dla których wartości funkcji g są nie mniejsze od wartości funkcji f.

Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=256
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Naszkicuj wykres funkcji f(x)=\left|a^{2-x}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=10
b=11
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=22
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=1024
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm