«« Wykres funkcji f(x)=a^x zawiera punkt
A=\left(-\frac{3}{2},\frac{1}{8}\right).
Podaj a.
Dane
b=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Funkcja g określona jest wzorem
g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal,
dla których m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą dodatnią wartość m, która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0
« Dane jest równanie (k+3)^2x^2+(k+2)x+1=0, gdzie
k\neq -1. Funkcja g
przyporządkowuje liczbie k liczbę
g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie
x_1,x_2 są różnymi pierwiastkami tego równania.
Wyznacz D_g=(a, b).
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Zbiorem wartości funkcji g jest przedział
ZW_g=(\sqrt[3]{c},d).
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (2 pkt)
Podaj d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
» Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest
symetryczny względem osi Ox do wykresu funkcji
g.
Napisz wzór funkcji g. Rozwiąż nierówność
g(x) \lessdot 0.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=1024
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb całkowitych z przedziału (-10,10)
spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat