Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=-7
Odpowiedzi:
A. \langle p, q\rangle
B. (-\infty, p)
C. \langle p,+\infty)
D. (p, q)
E. (p,+\infty)
F. (-\infty, p\rangle
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(3\cdot m+5)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p, q)
C. \langle p, q\rangle
D. (-\infty,p)
E. \langle p, +\infty)
F. (p, +\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=-2^{-x}
B. h(x)=\left(\frac{1}{2}\right)^{2-x}
C. h(x)=2^{5-x}
D. h(x)=\left(\frac{1}{2}\right)^{-x}
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-2}-2183 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p , dla której prawdziwa jest równość
\log_{\sqrt{2}}{(2+\log_{2}{p})}=0 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pr-20327 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakich wartości parametru
m równanie
\left(\frac{\sqrt{5}}{5}\right)^{3x}=2^{am+b}
ma rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=4
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcje
f(x)=\left(\frac{1}{3}\right)^{x+a}-1
oraz
g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p
mają to samo miejsce zerowe.
Oblicz to miejsce zerowe.
Dane
a=-7
b=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj wartość parametru
p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność:
4\cdot \left(\sqrt{8}\right)^{ax}\leqslant
\left(\frac{2\sqrt{2}}{16}\right)^{-2-ax}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20314 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscem zerowym funkcji
f(x)=\log_{p}{(x-q)}+r jest
liczba
1 , a do jej wykresu należy punkt
P=(-1,-1) . Wiedząc, że prosta
x=-2 jest asymptotą pionową wykresu tej funkcji,
wyznacz
p,q,r .
Podaj p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj q+r .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wykres funkcji
f(x)=c^x zawiera punkt
A=(2\log_{2}{a},b) .
Podaj c .
Dane
a=13
b=169
q=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|f(x+1)-q| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6} .
Rozwiąż nierówność
f(x)\leqslant g(x) .
Jaka największa liczba spełnia tę nierówność?
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=25
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż