Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10163  
Podpunkt 1.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=1
Odpowiedzi:
A. \langle p, q\rangle B. (-\infty, p)\cup(q,+\infty)
C. (p,+\infty) D. \langle p,+\infty)
E. (p, q) F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11197  
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=3^{ax}.

Do jej wykresu nie należy punkt:

Dane
a=6
Odpowiedzi:
A. A=\left(-\frac{1}{2},-\frac{1}{27}\right) B. A=\left(\frac{1}{6},3\right)
C. A=(0,1) D. A=\left(-\frac{1}{6},\frac{1}{3}\right)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11189  
Podpunkt 3.1 (1 pkt)
 Zbiór wartości funkcji f(x)=a^x+\sqrt{b} zawiera liczbę:
Dane
a=2
b=21
Odpowiedzi:
A. -21 B. \sqrt{21}-4
C. \frac{\sqrt{21}}{6} D. \sqrt{21}+3
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11202  
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(a,b).

Wyznacz wartość parametru m.

Dane
a=4
b=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10164  
Podpunkt 5.1 (1 pkt)
 » Rozwiązaniem nierówności 7^{x+a}\leqslant 3 jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci \log_{p}{b}+c, gdzie p,b,c\in\mathbb{Z}.

Podaj wartości parametrów p, b i c.

Dane
a=1
Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20500  
Podpunkt 6.1 (2 pkt)
 « Punkt P=\left(p,\frac{1}{q}\right) należy do wykresu funkcji wykładniczej f(x)=a^x. Oblicz wartość tej funkcji dla argumentu \frac{m}{2}.

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Dane
p=8
q=625
m=-11
Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20580  
Podpunkt 7.1 (1 pkt)
 Funkcje f(x)=\left(\frac{1}{3}\right)^{x+a}-1 oraz g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p mają to samo miejsce zerowe.

Oblicz to miejsce zerowe.

Dane
a=1
b=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj wartość parametru p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20550  
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność: 2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20314  
Podpunkt 9.1 (1 pkt)
Miejscem zerowym funkcji f(x)=\log_{p}{(x-q)}+r jest liczba 1, a do jej wykresu należy punkt P=(-1,-1). Wiedząc, że prosta x=-2 jest asymptotą pionową wykresu tej funkcji, wyznacz p,q,r.

Podaj p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj q+r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30234  
Podpunkt 10.1 (1 pkt)
 « Wykres funkcji f(x)=c^x zawiera punkt A=(2\log_{2}{a},b).

Podaj c.

Dane
a=13
b=169
q=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|f(x+1)-q|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30229  
Podpunkt 11.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30183  
Podpunkt 12.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30227  
Podpunkt 13.1 (2 pkt)
Dana jest funkcja f(x)=\left|2^{x-1}-3\right|.

Oblicz f(1+\log_{2}{5}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
Rozwiąż nierówność f(x) > f(1+\log_{2}{5}).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm