Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a-b=3 B. a\cdot b=-3
C. a-b=1\frac{7}{36} D. a\cdot b=-1\frac{11}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=3
b=-3
Odpowiedzi:
A. A=(-3,9) B. A=(-1,-3)
C. A=(-1,-9) D. A=(-1,9)
Zadanie 3.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{5}\right)^{5-x} B. h(x)=-5^{-x}
C. h(x)=\left(\frac{1}{5}\right)^{-x} D. h(x)=5^{2-x}
Zadanie 4.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{7}}{49}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\log_{x}{(ax-1)}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20578 ⋅ Poprawnie: 23/39 [58%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: 2^{2x+2a-1}+4^{x+a}=24

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20564 ⋅ Poprawnie: 18/43 [41%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż równanie: 3^{\frac{2x}{a}}+\left(\frac{27}{4}\right)^{-1}+9^{\frac{x}{a}}=2\cdot 3^{\frac{2x}{a}+1}

Podaj rozwiązanie tego równania.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność: 4\cdot \left(\sqrt{8}\right)^{ax}\leqslant \left(\frac{2\sqrt{2}}{16}\right)^{-2-ax} .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20300 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x-5}{x-1}}{\left(x^3-13x^2+48x-36\right)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dane są funkcje f(x)=1-2^{x+a} i g(x)=x^2+(2a-2)x+a^2-2a. Rozwiąż graficznie nierówność f(x)\leqslant g(x).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
b=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm