Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-2\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Funkcja h(x)=(-2m-4)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty, p) B. (p, q)
C. (p, +\infty) D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty) F. (-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{-4-x}-5.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. \langle p, +\infty) B. \langle p, q\rangle
C. (p, q) D. (-\infty, p)\cup(q, +\infty)
E. (-\infty, p\rangle F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=6, jeśli f(x)=5^{2x}, zachodzi dla x=-\log_{5}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 27/25 [108%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p, dla której prawdziwa jest równość \log_{\sqrt{2}}{(2+\log_{2}{p})}=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Rozwiąż równanie: 7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}

Podaj rozwiązanie tego równania.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Punkt A=\left(3,\frac{1}{p}\right) należy do wykresu funkcji g(x)=a^x, gdzie a > 0.

Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1.

Dane
p=8
q=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji h.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20317 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność 3^{6ax}-4\cdot 27^{2ax-\frac{4}{3}}+9^{3ax-\frac{3}{2}} \lessdot 80 .

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru m\in\mathbb{R} dziedziną funkcji g(x)=\log{ \left( \frac{m}{2x^2+2mx+\frac{m}{2}+3} \right) } . jest zbiór \mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji f(x)=a^x zawiera punkt A=\left(-\frac{3}{2},\frac{1}{8}\right).

Podaj a.

Dane
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane są funkcje f(x)=2^{ax-4} i g(x)=5-\left(\frac{1}{2}\right)^{ax-6}. Rozwiąż nierówność f(x)\leqslant g(x).

Jaka największa liczba spełnia tę nierówność?

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=3
b=27
c=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm