« Dana jest funkcja
f(x)=
\begin{cases}
3^{-x} \text{, dla } x \lessdot 0 \\
-(x+a)^2+b \text{, dla } x\geqslant 0
\end{cases}
.
Ustal liczbę rozwiąząń równania f(x)=m w zależności
od wartości parametru m.
Podaj długość przedziału tych wartości m, dla
których równanie to ma dokładnie trzy rozwiązania.
Dane
a=-2
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największą wartość m, dla której równanie ma
dokładnie dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20320 ⋅ Poprawnie: 0/0
Miejscem zerowym funkcji f(x)=\log_{p}{(x-q)}+r jest
liczba 1, a do jej wykresu należy punkt
P=(-1,-1). Wiedząc, że prosta
x=-2 jest asymptotą pionową wykresu tej funkcji,
wyznacz p,q,r.
Podaj p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj q+r.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0
«« Wykres funkcji f(x)=a^x zawiera punkt
A=\left(-\frac{3}{2},\frac{1}{8}\right).
Podaj a.
Dane
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Funkcja g określona jest wzorem
g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal,
dla których m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą dodatnią wartość m, która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0