Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10163  
Podpunkt 1.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=-2
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p)
C. (p, q) D. (-\infty, p\rangle
E. (p,+\infty) F. (-\infty, p)\cup(q,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11190  
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=-2
Odpowiedzi:
A. A=(0,-4) B. A=(0,-16)
C. A=(-2,-16) D. A=(-2,16)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11212  
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=a^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-b) dla argumentu x=7.

Dane
a=5
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11195  
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=a^x.

Funkcja określona wzorem h(x)=c+g(x-b) z prostą o równaniu y-d=0:

Dane
a=6
b=-2
c=2
d=7
Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. nie ma punktów wspólnych
C. ma dokładnie jeden punkt wspólny D. ma dokładnie dwa punkty wspólne
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10153  
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\log_{x}{(ax-1)}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20326  
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja f(x)= \begin{cases} 3^{-x} \text{, dla } x \lessdot 0 \\ -(x+a)^2+b \text{, dla } x\geqslant 0 \end{cases} . Ustal liczbę rozwiąząń równania f(x)=m w zależności od wartości parametru m.

Podaj długość przedziału tych wartości m, dla których równanie to ma dokładnie trzy rozwiązania.

Dane
a=-4
b=17
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największą wartość m, dla której równanie ma dokładnie dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20323  
Podpunkt 7.1 (1 pkt)
 « Rozwiąż równanie 9^{x^2-2ax+5+a^2}=27^{4x-2-4a}.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20547  
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność: \left(\frac{5}{7}\right)^{x^2+bx} \geqslant \left(\frac{7}{5}\right)^{c} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami.

Dane
b=-8
c=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20301  
Podpunkt 9.1 (1 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x}{x+2}}{(x^3-3x^2+4)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj długość najkrótszego z tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj sumę wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30232  
Podpunkt 10.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30231  
Podpunkt 11.1 (2 pkt)
 Na rysunku pokazano wykres funkcji f(x)=-a^x+3.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Naszkicuj wykres funkcji g(x)=a^{|x-2|}+6.

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30183  
Podpunkt 12.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30225  
Podpunkt 13.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=64
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm