Podgląd testu : lo2@sp-fun-wyk-log-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3).
Wówczas:
Odpowiedzi:
|
A. a\cdot b=-1\frac{11}{16}
|
B. a-b=1\frac{7}{36}
|
|
C. a-b=3
|
D. a\cdot b=-3
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Funkcja
g(x)=4^{3x+1} przyjmuje wartość:
Odpowiedzi:
|
A. \frac{\sqrt{7}}{7}
|
B. -\frac{1}{7}
|
|
C. -\frac{\pi}{2}
|
D. 0
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=5^{4-x}
|
B. h(x)=-5^{-x}
|
|
C. h(x)=\left(\frac{1}{5}\right)^{-x}
|
D. h(x)=\left(\frac{1}{5}\right)^{5-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(3,-20).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. 64^{\log_{16}{3}}=27
|
B. 16^{\log_{4}{3}}=27
|
|
C. 16^{\log_{4}{3}}=9
|
D. 64^{\log_{4}{3}}=9
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20577 ⋅ Poprawnie: 13/36 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
3^{ax+b}\cdot 4^{2x+3}=3^{cx+d}\cdot 2^{3x+e}
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=4
b=-4
c=5
d=-8
e=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcje
f(x)=\left(\frac{1}{3}\right)^{x+a}-1
oraz
g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p
mają to samo miejsce zerowe.
Oblicz to miejsce zerowe.
Dane
a=-2
b=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj wartość parametru
p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dla jakich argumentów funkcja
f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości
większe niż funkcja
g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?
Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
dziedziną funkcji
g(x)=\log{
\left(
\frac{m}{2x^2+2mx+\frac{m}{2}+3}
\right)
}
.
jest zbiór
\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
g(x)=|2^{x-1}-3| oraz
x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.
Oblicz g(x_0).
Dane
a=32
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Wyznacz te wartości
x, dla których funkcja
g przyjmuje wartości większe od
g(x_0).
Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Naszkicuj wykres funkcji
f(x)=\left|a^{2-x}-b\right|.
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Dane
a=5
b=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 13. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 13.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g.
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x).
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=32
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)