Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=-6
Odpowiedzi:
A. \langle p,+\infty) B. \langle p, q\rangle
C. (p,+\infty) D. (p, q)
E. (-\infty, p\rangle F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{2},5\right). Wówczas liczba a jest równa \frac{1}{5^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 118/180 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=3^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-4) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=9, jeśli f(x)=5^{2x}, zachodzi dla x=-\log_{5}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p, dla której prawdziwa jest równość \log_{\sqrt{2}}{(2+\log_{2}{p})}=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=-1
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20567 ⋅ Poprawnie: 24/52 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie: \frac{a^{x^3}}{(a^3)^{3x}}=(a^2)^{9-x^2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20559 ⋅ Poprawnie: 35/94 [37%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż nierówność: \left(\frac{2}{3}\right)^{ax+2}\cdot \left(\frac{3}{2}\right)^{2ax+1} > \left(\frac{27}{8}\right)^{ax-3} .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20312 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Do wykresu rosnącej funkcji logarytmicznej należy punkt A=(2,1).

Wyznacz wzór tej funkcji f(x)=\log_{a}{x}. Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Narysuj wykres funkcji g(x)=|f(x)-2|. Zapisz w postaci przedziału zbiór tych argumentów, dla których wartości funkcji g są nie mniejsze od wartości funkcji f.

Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/107 [13%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja g(x)=\left(2-\frac{a}{2}m^2\right)^x jest malejąca.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców tych przedziałów.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Na rysunku pokazano wykres funkcji f(x)=-a^x+3.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Naszkicuj wykres funkcji g(x)=a^{|x+6|}-2.

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
Dana jest funkcja f(x)=\left|2^{x-1}-3\right|.

Oblicz f(1+\log_{2}{5}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
Rozwiąż nierówność f(x) > f(1+\log_{2}{5}).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm