Podgląd testu : lo2@sp-fun-wyk-log-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=4
Odpowiedzi:
A. (p, q)
B. (-\infty, p)
C. (-\infty, p\rangle
D. \langle p,+\infty)
E. (p,+\infty)
F. \langle p, q\rangle
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
g(x)=4^{5x+1} przyjmuje wartość:
Odpowiedzi:
A. -\frac{\pi}{2}
B. \frac{\sqrt{2}}{2}
C. 0
D. -\frac{1}{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiór wartości funkcji
f(x)=2^x+\sqrt{19}
zawiera liczbę:
Odpowiedzi:
A. \frac{\sqrt{19}}{6}
B. \sqrt{19}+2
C. \sqrt{19}-3
D. -21
Zadanie 4. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x , gdzie
a>0 ,
należą punkty o współrzędnych
A=\left(4,4\right) i
B=\left(1,\frac{1}{2}\right) .
Oblicz f(7) .
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji
h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)} ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20562 ⋅ Poprawnie: 38/90 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
\left(\frac{25\sqrt{5}}{0,2}\right)^{bx}=5^{x^2+c}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
b=-2
c=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right) .
Podaj p .
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20553 ⋅ Poprawnie: 14/36 [38%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
3^{3ax+1}-4\cdot 27^{ax-1}+9^{1,5ax-1} \lessdot 80
.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20314 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscem zerowym funkcji
f(x)=\log_{p}{(x-q)}+r jest
liczba
1 , a do jej wykresu należy punkt
P=(-1,-1) . Wiedząc, że prosta
x=-2 jest asymptotą pionową wykresu tej funkcji,
wyznacz
p,q,r .
Podaj p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj q+r .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=36
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Naszkicuj wykres funkcji
f(x)=\left|a^{2-x}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=8
b=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=22
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=8
b=-2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż