Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 159/260 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 7:
Odpowiedzi:
A. \log_{3}{49} B. 7\cdot \log_{3}{49}
C. \frac{\log_{3}{7}}{2} D. \log_{7}{9}
E. \log_{7}{7} F. \log_{3}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 204/369 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=8^{x-1}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. \langle 0,+\infty) B. (-1,+\infty)
C. (-\infty,-1) D. \mathbb{R}
E. (-\infty,0\rangle F. (0,+\infty)
Zadanie 3.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Funkcja h(x)=(-5m+1)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p)\cup(q, +\infty)
C. \langle p, +\infty) D. (-\infty, p)
E. (p, q) F. (p, +\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 117/179 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja f(x)=5^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-4) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 302/401 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(4,-20).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20570 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: (7\sqrt{7})^{ax+b}=\left(\frac{49}{\sqrt[3]{7}}\right)^{cx+d} .

Podaj rozwiązanie tego równania.

Dane
a=4
b=6
c=4
d=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność \left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3 .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych z przedziału z przedziału \langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm