Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 10:
Odpowiedzi:
A. 10\cdot \log_{3}{100} B. \log_{10}{9}
C. \log_{3}{10} D. \log_{3}{100}
E. \frac{\log_{3}{10}}{2} F. \log_{10}{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=4^{x+3}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. (-\infty,3) B. \mathbb{R}
C. (3,+\infty) D. (-\infty,0\rangle
E. \langle 0,+\infty) F. \emptyset
Zadanie 3.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Funkcja f(x)=(13\cdot m+3)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. (-\infty,p)
C. (p, q) D. (-\infty,p\rangle
E. \langle p, +\infty) F. \langle p, q\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=4^{5-x} B. h(x)=\left(\frac{1}{4}\right)^{-x}
C. h(x)=-4^{-x} D. h(x)=\left(\frac{1}{4}\right)^{4-x}
Zadanie 5.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja g(x)=4^x.

Funkcja określona wzorem h(x)=4+g(x-6) z prostą o równaniu y-6=0:

Odpowiedzi:
A. ma dokładnie dwa punkty wspólne B. nie ma punktów wspólnych
C. ma dokładnie jeden punkt wspólny D. ma nieskończenie wiele punktów wspólnych
Zadanie 6.  2 pkt ⋅ Numer: pp-20564 ⋅ Poprawnie: 18/43 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Rozwiąż równanie: 3^{\frac{2x}{a}}+\left(\frac{27}{4}\right)^{-1}+9^{\frac{x}{a}}=2\cdot 3^{\frac{2x}{a}+1}

Podaj rozwiązanie tego równania.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20554 ⋅ Poprawnie: 29/60 [48%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność \left(\frac{1}{3}\right)^{x-a+1}+\left(\frac{1}{3}\right)^{x-a}\leqslant 4 .

Odpowiedź zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm