Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-2\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-3x-4 \\y=6^{x-3}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
» Funkcja
f(x)=(4\cdot m-5)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. \langle p, q\rangle
|
B. (p, q)
|
|
C. (-\infty,p\rangle
|
D. (p, +\infty)
|
|
E. \langle p, +\infty)
|
F. (-\infty,p)
|
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=4^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -4^{x}
|
B. \left(\frac{1}{7}\right)^{x}
|
|
C. 4^{-x}-3
|
D. -4^{-x}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(2,-42).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Do wykresu funkcji
h(x)=a^x należy punkt
P=\left(-\frac{1}{2},b\right).
Oblicz a.
Dane
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=13
b=3
c=5
d=4
e=-2
f=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Funkcje
f(x)=\left(\frac{1}{3}\right)^{x+a}-1
oraz
g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p
mają to samo miejsce zerowe.
Oblicz to miejsce zerowe.
Dane
a=-6
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj wartość parametru
p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Rozwiąż nierówność
\left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=-6
b=-5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Ile liczb całkowitych z przedziału z przedziału
\langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)