Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{9}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=8^{x-1}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (0,+\infty)
|
B. \emptyset
|
|
C. (-\infty,0\rangle
|
D. \mathbb{R}
|
|
E. (-1,+\infty)
|
F. (-\infty,-1)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wykres funkcji
y=-1-\frac{1}{9^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=-1+\sqrt{2}
|
B. y=9x
|
|
C. x=\sqrt{17}
|
D. y=-1-\sqrt{2}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{12}\right)^x.
Funkcja g(x)=f(x+6)-1:
Odpowiedzi:
|
A. ma dwa miejsca zerowe
|
B. nie ma miejsc zerowych
|
|
C. ma więcej niż dwa miejsca zerowe
|
D. ma jedno miejsce zerowe
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{13}}{169}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Rozwiąż równanie
\left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1}
.
Podaj największe z rozwiązań.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Punkt
A=\left(3,\frac{1}{p}\right) należy do
wykresu funkcji
g(x)=a^x, gdzie
a > 0.
Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1.
Dane
p=216
q=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji
h.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20558 ⋅ Poprawnie: 22/44 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{1}{5}\right)^{x+a-1}\cdot 625^{x+a} \geqslant
\frac{1}{\sqrt{5}^{3-x-a}}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=9
b=729
c=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)