Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 4:
Odpowiedzi:
A. \log_{5}{16} B. \log_{4}{4}
C. 4\cdot \log_{5}{16} D. \log_{5}{4}
E. \log_{4}{25} F. \frac{\log_{5}{4}}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=5
b=-5
Odpowiedzi:
A. A=(-5,-25) B. A=(-5,25)
C. A=(-3,25) D. A=(-3,-25)
Zadanie 3.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=3^{6x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=(0,1) B. A=\left(-\frac{1}{2},-\frac{1}{27}\right)
C. A=\left(-\frac{1}{6},\frac{1}{3}\right) D. A=\left(\frac{1}{6},3\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór wartości funkcji f(x)=6^x+\sqrt{15} zawiera liczbę:
Odpowiedzi:
A. \sqrt{15}-2 B. \sqrt{15}+4
C. \frac{\sqrt{15}}{5} D. -16
Zadanie 5.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=5
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20579 ⋅ Poprawnie: 29/42 [69%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozwiąż równanie: 3^{-ax}=4\cdot \left(\frac{1}{3}\right)^{ax+1}-9

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20564 ⋅ Poprawnie: 18/43 [41%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie: 3^{\frac{2x}{a}}+\left(\frac{27}{4}\right)^{-1}+9^{\frac{x}{a}}=2\cdot 3^{\frac{2x}{a}+1}

Podaj rozwiązanie tego równania.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20554 ⋅ Poprawnie: 29/60 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż nierówność \left(\frac{1}{3}\right)^{x-a+1}+\left(\frac{1}{3}\right)^{x-a}\leqslant 4 .

Odpowiedź zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=6
b=216
c=11
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm