Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{2})^x przyjmuje wartość 8:
Odpowiedzi:
A. \log_{2}{8} B. \log_{8}{4}
C. \frac{\log_{2}{8}}{2} D. \log_{2}{64}
E. \log_{8}{8} F. 8\cdot \log_{2}{64}
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=6^{x+2}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. (-\infty,2) B. (-\infty,0\rangle
C. (-\infty,0) D. \mathbb{R}
E. \emptyset F. \langle 0,+\infty)
Zadanie 3.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Funkcja f(x)=(3\cdot m+2)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. (-\infty,p)
C. \langle p, q\rangle D. \langle p, +\infty)
E. (-\infty,p\rangle F. (p, q)
Podpunkt 3.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{-5-x}+2.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. (-\infty, p\rangle B. \langle p, q\rangle
C. (-\infty, p)\cup(q, +\infty) D. \langle p, +\infty)
E. (p, q) F. (-\infty,p)
Podpunkt 4.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-2}-239.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=-1
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20578 ⋅ Poprawnie: 23/39 [58%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie: 2^{2x+2a-1}+4^{x+a}=24

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20569 ⋅ Poprawnie: 48/61 [78%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie: \left(\frac{4}{3}\right)^{x^2+ax}=\left(\frac{9}{16}\right)^{\frac{b}{2}x-2}\cdot (0,75)^{x^2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż nierówność \left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3 .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-7
b=-6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Ile liczb całkowitych z przedziału z przedziału \langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=19
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm