Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 8:
Odpowiedzi:
A. \log_{8}{25} B. 8\cdot \log_{5}{64}
C. \log_{5}{8} D. \log_{5}{64}
E. \log_{8}{8} F. \frac{\log_{5}{8}}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=27.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=3^{6x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(\frac{1}{6},3\right) B. A=\left(-\frac{1}{2},-\frac{1}{27}\right)
C. A=\left(\frac{2}{6},9\right) D. A=\left(-\frac{1}{6},\frac{1}{3}\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=-7^{-x} B. h(x)=\left(\frac{1}{7}\right)^{-x}
C. h(x)=7^{2-x} D. h(x)=\left(\frac{1}{7}\right)^{7-x}
Zadanie 5.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(4,4\right) i B=\left(2,1\right).

Oblicz f(11).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=5
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie: \left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}

Podaj rozwiązanie tego równania.

Dane
a=11
b=6
c=-4
d=-4
e=0
f=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcje f(x)=\left(\frac{1}{3}\right)^{x+a}-1 oraz g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p mają to samo miejsce zerowe.

Oblicz to miejsce zerowe.

Dane
a=2
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj wartość parametru p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20550 ⋅ Poprawnie: 17/25 [68%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność: 2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja g(x)=\left(2-\frac{a}{2}m^2\right)^x jest malejąca.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców tych przedziałów.

Dane
a=25
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=19
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm