Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 4:
Odpowiedzi:
A. \log_{3}{16} B. \log_{4}{4}
C. \log_{4}{9} D. 4\cdot \log_{3}{16}
E. \log_{3}{4} F. \frac{\log_{3}{4}}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{6}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 14\cdot \pi -43 B. 5^{-4}
C. 9\cdot \pi -29 D. \frac{\sqrt{\pi}}{9}
Zadanie 3.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=3^{4x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(\frac{2}{4},9\right) B. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
C. A=\left(-\frac{1}{4},\frac{1}{3}\right) D. A=\left(\frac{1}{4},3\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. B
C. D D. C
Zadanie 5.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja g(x)=5^x.

Funkcja określona wzorem h(x)=-1+g(x+3) z prostą o równaniu y+2=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. nie ma punktów wspólnych
C. ma dokładnie jeden punkt wspólny D. ma dokładnie dwa punkty wspólne
Zadanie 6.  2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wykresy dwóch funcji f(x)=2^{x+a}-3 oraz g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś Oy mają w tym samym punkcie.

Podaj rzędną tego punktu.

Dane
a=5
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie: 3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}

Podaj rozwiązanie tego równania.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20565 ⋅ Poprawnie: 39/79 [49%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie: \left(\frac{2}{3}\right)^{\frac{1}{x+a}}=\frac{4}{9}\cdot\left(\frac{2}{3}\right)^{a+x-2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20550 ⋅ Poprawnie: 17/25 [68%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność: 2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=5
b=125
c=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm