Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
2:
Odpowiedzi:
|
A. 2\cdot \log_{5}{4}
|
B. \frac{\log_{5}{2}}{2}
|
|
C. \log_{5}{4}
|
D. \log_{2}{25}
|
|
E. \log_{5}{2}
|
F. \log_{2}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(1, 8) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wykres funkcji
y=-6-\frac{1}{9^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=-6-\sqrt{2}
|
B. y=9x
|
|
C. x=\sqrt{17}
|
D. y=-6+\sqrt{2}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{8}\right)^x.
Funkcja g(x)=f(x+2)-3:
Odpowiedzi:
|
A. ma jedno miejsce zerowe
|
B. ma więcej niż dwa miejsca zerowe
|
|
C. ma dwa miejsca zerowe
|
D. nie ma miejsc zerowych
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Równość
f(x)=4, jeśli
f(x)=15^{2x}, zachodzi dla
x=-\log_{15}{p}.
Podaj liczbę p.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Do wykresu funkcji
h(x)=a^x należy punkt
P=\left(-\frac{1}{2},b\right).
Oblicz a.
Dane
b=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20572 ⋅ Poprawnie: 109/157 [69%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Rozwiązanie równania
7x-3^{54}=9^{28}-3^{11}\cdot 9^{22}
zapisz w postaci potęgi, której podstawą jest liczba pierwsza.
Podaj wykładnik tej potęgi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Funkcje
f(x)=\left(\frac{1}{3}\right)^{x+a}-1
oraz
g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p
mają to samo miejsce zerowe.
Oblicz to miejsce zerowe.
Dane
a=6
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj wartość parametru
p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20549 ⋅ Poprawnie: 24/49 [48%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Rozwiąż nierówność:
\frac{3^{2x+a}}{9^{\frac{x+b}{2}}} > \left(\frac{1}{3}\right)^{x^2}
Podaj najmniejszą liczbę, która nie spełnia tej nierówności.
Dane
a=-1
b=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)