Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
6:
Odpowiedzi:
|
A. \log_{6}{9}
|
B. \log_{3}{36}
|
|
C. \frac{\log_{3}{6}}{2}
|
D. \log_{6}{6}
|
|
E. \log_{3}{6}
|
F. 6\cdot \log_{3}{36}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=5^{x-2}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (-\infty,-2)
|
B. \emptyset
|
|
C. (-\infty,0\rangle
|
D. \langle 0,+\infty)
|
|
E. \mathbb{R}
|
F. (0,+\infty)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
Funkcja
h(x)=(-4m-1)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. \langle p, +\infty)
|
B. (-\infty, p)
|
|
C. (p, q)
|
D. (p, +\infty)
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. (-\infty, p\rangle
|
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
f(x)=5^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-4)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
g(x)=5^x.
Funkcja określona wzorem h(x)=2+g(x+1) z prostą o równaniu
y+1=0:
Odpowiedzi:
|
A. ma dokładnie dwa punkty wspólne
|
B. nie ma punktów wspólnych
|
|
C. ma dokładnie jeden punkt wspólny
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Do wykresu funkcji
h(x)=a^x należy punkt
P=\left(-\frac{1}{2},b\right).
Oblicz a.
Dane
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=11
b=2
c=-5
d=1
e=4
f=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20565 ⋅ Poprawnie: 39/79 [49%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie:
\left(\frac{2}{3}\right)^{\frac{1}{x+a}}=\frac{4}{9}\cdot\left(\frac{2}{3}\right)^{a+x-2}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20548 ⋅ Poprawnie: 21/32 [65%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
» Rozwiąż nierówność:
\frac{7^{ax^2}}{(\sqrt{7})^{bx+0,5}}\leqslant \sqrt[4]{7}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=16
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=5
b=125
c=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)