Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-\frac{3}{2}\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{3}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 8\cdot \pi -25 B. 5^{-8}
C. \frac{\sqrt{\pi}}{7} D. 7\cdot \pi -22
Zadanie 3.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Funkcja h(x)=(-m-5)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (p, q) B. (p, +\infty)
C. (-\infty, p)\cup(q, +\infty) D. (-\infty, p\rangle
E. \langle p, +\infty) F. (-\infty, p)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{3}\right)^{x}+2 B. g(x)=\left(\frac{1}{3}\right)^{x}-2
C. g(x)=9\cdot\left(\frac{1}{3}\right)^x D. g(x)=3\cdot\left(\frac{1}{3}\right)^{x+1}
Zadanie 5.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-2}-5.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Do wykresu funkcji h(x)=a^x należy punkt P=\left(-\frac{1}{2},b\right).

Oblicz a.

Dane
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20575 ⋅ Poprawnie: 38/74 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie: 3^{x^2+\frac{m}{n}x}=3\sqrt[n]{3}

Podaj najmniejsze rozwiązanie tego równania.

Dane
m=5
n=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20571 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Rozwiąż równanie: b^{x+a}\cdot \left(\frac{1}{b}\right)^{2x+2a+5}=b^3 .

Podaj rozwiązanie tego równania.

Dane
a=-7
b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20549 ⋅ Poprawnie: 24/49 [48%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż nierówność: \frac{3^{2x+a}}{9^{\frac{x+b}{2}}} > \left(\frac{1}{3}\right)^{x^2}

Podaj najmniejszą liczbę, która nie spełnia tej nierówności.

Dane
a=2
b=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm