Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-\frac{5}{2}\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(5, 3125) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Funkcja f(x)=(14\cdot m+5)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p, +\infty)
C. (p, +\infty) D. (-\infty,p)
E. (p, q) F. \langle p, q\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja f(x)=4^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-6) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Równość f(x)=17, jeśli f(x)=8^{2x}, zachodzi dla x=-\log_{8}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Do wykresu funkcji h(x)=a^x należy punkt P=\left(-\frac{1}{2},b\right).

Oblicz a.

Dane
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż równanie: 7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}

Podaj rozwiązanie tego równania.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Punkt A=\left(3,\frac{1}{p}\right) należy do wykresu funkcji g(x)=a^x, gdzie a > 0.

Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1.

Dane
p=64
q=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji h.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20559 ⋅ Poprawnie: 35/94 [37%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż nierówność: \left(\frac{2}{3}\right)^{ax+2}\cdot \left(\frac{3}{2}\right)^{2ax+1} > \left(\frac{27}{8}\right)^{ax-3} .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm