Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11218  
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(\frac{a}{b}\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Dane
a=-10
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11217  
Podpunkt 2.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=m.

Wyznacz liczbę a.

Dane
m=64
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11194  
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=b-\frac{1}{a^x} nie przecina prostej:
Dane
a=3
b=7
Odpowiedzi:
A. y=7-\sqrt{2} B. y=7+\sqrt{2}
C. y=3x D. x=\sqrt{37}
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11192  
Podpunkt 4.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{a-x}+b.

Zbiór ZW_g ma postać:

Dane
a=5
b=-6
Odpowiedzi:
A. \langle p, +\infty) B. (-\infty,p)
C. (-\infty, p\rangle D. (p, q)
E. \langle p, q\rangle F. (-\infty, p)\cup(q, +\infty)
Podpunkt 4.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11205  
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{b\sqrt{b}}{c}\right).

Wyznacz wartość parametru a.

Dane
b=5
c=64
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20583  
Podpunkt 6.1 (2 pkt)
 » Do wykresu funkcji h(x)=a^x należy punkt P=\left(-\frac{1}{2},b\right).

Oblicz a.

Dane
b=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20572  
Podpunkt 7.1 (2 pkt)
» Rozwiązanie równania 7x-3^{54}=9^{28}-3^{11}\cdot 9^{22} zapisz w postaci potęgi, której podstawą jest liczba pierwsza.

Podaj wykładnik tej potęgi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20569  
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie: \left(\frac{4}{3}\right)^{x^2+ax}=\left(\frac{9}{16}\right)^{\frac{b}{2}x-2}\cdot (0,75)^{x^2} .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20546  
Podpunkt 9.1 (1 pkt)
 « Rozwiąż nierówność \left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3 .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=8
b=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Ile liczb całkowitych z przedziału z przedziału \langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30174  
Podpunkt 10.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30177  
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm