Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-4\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=7^{x-1}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (-1,+\infty)
|
B. \mathbb{R}
|
|
C. (0,+\infty)
|
D. \langle 0,+\infty)
|
|
E. (-\infty,0)
|
F. \emptyset
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=3^{6x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{3}{6},27\right)
|
B. A=\left(-\frac{1}{6},\frac{1}{3}\right)
|
|
C. A=\left(-\frac{1}{2},-\frac{1}{27}\right)
|
D. A=\left(\frac{1}{6},3\right)
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Podaj wspólne rozwiązanie równań
7^{x^2}\cdot \sqrt{7}=7^{\frac{99}{2}}
oraz
\log_{\frac{1}{7}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Rozwiąż równanie:
7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}
Podaj rozwiązanie tego równania.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20568 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie:
\frac{a^{x^3}}{(a^4)^{4x+4}}=\left(\frac{1}{a}\right)^{x^2}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj sumę wszystkich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20547 ⋅ Poprawnie: 25/71 [35%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{5}{7}\right)^{x^2+bx} \geqslant \left(\frac{7}{5}\right)^{c}
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
b=-10
c=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=7
b=343
c=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)