Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
10:
Odpowiedzi:
|
A. 10\cdot \log_{3}{100}
|
B. \log_{3}{100}
|
|
C. \log_{10}{9}
|
D. \log_{3}{10}
|
|
E. \frac{\log_{3}{10}}{2}
|
F. \log_{10}{10}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{5}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{9}
|
B. 5^{-3}
|
|
C. 13\cdot \pi -40
|
D. 16\cdot \pi -51
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
» Funkcja
f(x)=(7\cdot m-4)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (-\infty,p)
|
B. (p, +\infty)
|
|
C. \langle p, +\infty)
|
D. (-\infty,p\rangle
|
|
E. \langle p, q\rangle
|
F. (p, q)
|
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=5^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -5^{-x}
|
B. 5^{-x}-4
|
|
C. \left(\frac{1}{7}\right)^{x}
|
D. -5^{x}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Podaj wspólne rozwiązanie równań
5^{x^2}\cdot \sqrt{5}=5^{\frac{51}{2}}
oraz
\log_{\frac{1}{5}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=-1
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20572 ⋅ Poprawnie: 109/157 [69%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Rozwiązanie równania
7x-3^{54}=9^{28}-3^{11}\cdot 9^{22}
zapisz w postaci potęgi, której podstawą jest liczba pierwsza.
Podaj wykładnik tej potęgi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Funkcje
f(x)=\left(\frac{1}{3}\right)^{x+a}-1
oraz
g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p
mają to samo miejsce zerowe.
Oblicz to miejsce zerowe.
Dane
a=-3
b=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj wartość parametru
p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20553 ⋅ Poprawnie: 14/36 [38%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Rozwiąż nierówność
3^{3ax+1}-4\cdot 27^{ax-1}+9^{1,5ax-1} \lessdot 80
.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)