Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{9}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-8x+3 \\y=6^{x+1}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{5},9\right).
Wówczas liczba
a jest równa
\frac{1}{9^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
f(x)=7^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-6)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Równość
f(x)=16, jeśli
f(x)=14^{2x}, zachodzi dla
x=-\log_{14}{p}.
Podaj liczbę p.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20573 ⋅ Poprawnie: 92/127 [72%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
\left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}
Podaj rozwiązanie tego równania.
Dane
a=13
b=15
c=2
d=1
e=-1
f=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right).
Podaj p.
Dane
a=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Rozwiąż nierówność
\left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=5
b=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Ile liczb całkowitych z przedziału z przedziału
\langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=36
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)