Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
4:
Odpowiedzi:
|
A. \log_{4}{4}
|
B. 4\cdot \log_{3}{16}
|
|
C. \log_{3}{16}
|
D. \log_{4}{9}
|
|
E. \log_{3}{4}
|
F. \frac{\log_{3}{4}}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-4x-3 \\y=3^{x+3}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{2}{4},9\right)
|
B. A=(0,1)
|
|
C. A=\left(\frac{1}{4},3\right)
|
D. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Zbiór wartości funkcji
f(x)=3^x+\sqrt{10}
zawiera liczbę:
Odpowiedzi:
|
A. \frac{\sqrt{10}}{6}
|
B. \sqrt{10}+1
|
|
C. \sqrt{10}-5
|
D. -12
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Do wykresu funkcji
h(x)=a^x należy punkt
P=\left(-\frac{1}{2},b\right).
Oblicz a.
Dane
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Rozwiąż równanie
\left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1}
.
Podaj największe z rozwiązań.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20566 ⋅ Poprawnie: 44/66 [66%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Rozwiąż równanie:
\left(\frac{5}{6}\right)^{\frac{4}{ax}}\cdot \left(\frac{6}{5}\right)^{2-ax}=\frac{25}{36}
.
Podaj rozwiązanie tego równania.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Dla jakich argumentów funkcja
f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości
większe niż funkcja
g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?
Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=4
b=64
c=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)