Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 2:
Odpowiedzi:
A. 2\cdot \log_{5}{4} B. \frac{\log_{5}{2}}{2}
C. \log_{5}{4} D. \log_{2}{25}
E. \log_{5}{2} F. \log_{2}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(1, 8) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=-6-\frac{1}{9^x} nie przecina prostej:
Odpowiedzi:
A. y=-6-\sqrt{2} B. y=9x
C. x=\sqrt{17} D. y=-6+\sqrt{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{8}\right)^x.

Funkcja g(x)=f(x+2)-3:

Odpowiedzi:
A. ma jedno miejsce zerowe B. ma więcej niż dwa miejsca zerowe
C. ma dwa miejsca zerowe D. nie ma miejsc zerowych
Zadanie 5.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Równość f(x)=4, jeśli f(x)=15^{2x}, zachodzi dla x=-\log_{15}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20583 ⋅ Poprawnie: 179/316 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Do wykresu funkcji h(x)=a^x należy punkt P=\left(-\frac{1}{2},b\right).

Oblicz a.

Dane
b=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20572 ⋅ Poprawnie: 109/157 [69%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Rozwiązanie równania 7x-3^{54}=9^{28}-3^{11}\cdot 9^{22} zapisz w postaci potęgi, której podstawą jest liczba pierwsza.

Podaj wykładnik tej potęgi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcje f(x)=\left(\frac{1}{3}\right)^{x+a}-1 oraz g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p mają to samo miejsce zerowe.

Oblicz to miejsce zerowe.

Dane
a=6
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj wartość parametru p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20549 ⋅ Poprawnie: 24/49 [48%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż nierówność: \frac{3^{2x+a}}{9^{\frac{x+b}{2}}} > \left(\frac{1}{3}\right)^{x^2}

Podaj najmniejszą liczbę, która nie spełnia tej nierówności.

Dane
a=-1
b=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Asymptotą poziomą wykresu funkcji g(x)=3^x+m jest prosta y=a, a funkcja f określona jest następująco: f(x)=g(-x).

Wyznacz m.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm