Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
4:
Odpowiedzi:
|
A. \frac{\log_{5}{4}}{2}
|
B. 4\cdot \log_{5}{16}
|
|
C. \log_{4}{25}
|
D. \log_{5}{16}
|
|
E. \log_{5}{4}
|
F. \log_{4}{4}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(2, 64) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=3^{8x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{2}{8},9\right)
|
B. A=\left(\frac{1}{8},3\right)
|
|
C. A=\left(-\frac{1}{8},\frac{1}{3}\right)
|
D. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 4.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{4-x}-5.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. \langle p, q\rangle
|
B. \langle p, +\infty)
|
|
C. (-\infty, p\rangle
|
D. (p, q)
|
|
E. (-\infty,p)
|
F. (-\infty, p)\cup(q, +\infty)
|
Podpunkt 4.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Podaj wspólne rozwiązanie równań
8^{x^2}\cdot 2\sqrt{2}=8^{\frac{129}{2}}
oraz
\log_{\frac{1}{8}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20562 ⋅ Poprawnie: 38/90 [42%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie:
\left(\frac{25\sqrt{5}}{0,2}\right)^{bx}=5^{x^2+c}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
b=-2
c=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20566 ⋅ Poprawnie: 44/66 [66%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Rozwiąż równanie:
\left(\frac{5}{6}\right)^{\frac{4}{ax}}\cdot \left(\frac{6}{5}\right)^{2-ax}=\frac{25}{36}
.
Podaj rozwiązanie tego równania.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20558 ⋅ Poprawnie: 22/44 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{1}{5}\right)^{x+a-1}\cdot 625^{x+a} \geqslant
\frac{1}{\sqrt{5}^{3-x-a}}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)