Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
8:
Odpowiedzi:
|
A. \frac{\log_{5}{8}}{2}
|
B. \log_{5}{64}
|
|
C. \log_{8}{8}
|
D. \log_{8}{25}
|
|
E. 8\cdot \log_{5}{64}
|
F. \log_{5}{8}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{7}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 5^{-6}
|
B. 8\cdot \pi -26
|
|
C. \frac{\sqrt{\pi}}{5}
|
D. 22\cdot \pi -69
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},3\right).
Wówczas liczba
a jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=-6^{-x}
|
B. h(x)=6^{2-x}
|
|
C. h(x)=\left(\frac{1}{6}\right)^{6-x}
|
D. h(x)=\left(\frac{1}{6}\right)^{-x}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
g(x)=6^x.
Funkcja określona wzorem h(x)=5+g(x+4) z prostą o równaniu
y-6=0:
Odpowiedzi:
|
A. ma nieskończenie wiele punktów wspólnych
|
B. ma dokładnie dwa punkty wspólne
|
|
C. nie ma punktów wspólnych
|
D. ma dokładnie jeden punkt wspólny
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20576 ⋅ Poprawnie: 120/182 [65%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie:
2^{x+m}=\left(\frac{1}{8}\right)^{\frac{n}{3x}}
Podaj najmniejsze rozwiązanie tego równania.
Dane
m=-11
n=28
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20584 ⋅ Poprawnie: 9/49 [18%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Punkt
A=\left(3,\frac{1}{p}\right) należy do
wykresu funkcji
g(x)=a^x, gdzie
a > 0.
Wyznacz miejsce zerowe funkcji h(x)=g(x+q)-1.
Dane
p=125
q=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj nawiększą wartość, która nie należy do zbioru wartości funkcji
h.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Dla jakich argumentów funkcja
f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości
większe niż funkcja
g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1}?
Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)