Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{2})^x
przyjmuje wartość
8:
Odpowiedzi:
|
A. \log_{8}{4}
|
B. \log_{8}{8}
|
|
C. 8\cdot \log_{2}{64}
|
D. \log_{2}{8}
|
|
E. \frac{\log_{2}{8}}{2}
|
F. \log_{2}{64}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=4^{x-2}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (0,+\infty)
|
B. (-\infty,-2)
|
|
C. (-2,+\infty)
|
D. (-\infty,0\rangle
|
|
E. \mathbb{R}
|
F. \langle 0,+\infty)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
Funkcja
h(x)=(-2m+2)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. (-\infty, p\rangle
|
|
C. (-\infty, p)
|
D. (p, q)
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. \langle p, +\infty)
|
Podpunkt 3.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=4^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. 4^{-x}-3
|
B. \left(\frac{1}{7}\right)^{x}
|
|
C. -4^{x}
|
D. -4^{-x}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Równość
f(x)=12, jeśli
f(x)=4^{2x}, zachodzi dla
x=-\log_{4}{p}.
Podaj liczbę p.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=-1
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}
Podaj rozwiązanie tego równania.
Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20566 ⋅ Poprawnie: 44/66 [66%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Rozwiąż równanie:
\left(\frac{5}{6}\right)^{\frac{4}{ax}}\cdot \left(\frac{6}{5}\right)^{2-ax}=\frac{25}{36}
.
Podaj rozwiązanie tego równania.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20548 ⋅ Poprawnie: 21/32 [65%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
» Rozwiąż nierówność:
\frac{7^{ax^2}}{(\sqrt{7})^{bx+0,5}}\leqslant \sqrt[4]{7}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=3
b=27
c=11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)