Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{9}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=8^{x+1}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (-\infty,1)
|
B. \langle 0,+\infty)
|
|
C. \emptyset
|
D. (0,+\infty)
|
|
E. \mathbb{R}
|
F. (-\infty,0)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{6},7\right).
Wówczas liczba
a jest równa
\frac{1}{7^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 118/180 [65%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
f(x)=7^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-5)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Podaj wspólne rozwiązanie równań
8^{x^2}\cdot 2\sqrt{2}=8^{\frac{129}{2}}
oraz
\log_{\frac{1}{8}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}
Podaj rozwiązanie tego równania.
Dane
a=-12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20571 ⋅ Poprawnie: 33/50 [66%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Rozwiąż równanie:
b^{x+a}\cdot \left(\frac{1}{b}\right)^{2x+2a+5}=b^3
.
Podaj rozwiązanie tego równania.
Dane
a=5
b=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20558 ⋅ Poprawnie: 22/44 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{1}{5}\right)^{x+a-1}\cdot 625^{x+a} \geqslant
\frac{1}{\sqrt{5}^{3-x-a}}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.
Wyznacz m.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=9
b=729
c=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)