Podgląd testu : lo2@sp-fun-wyk-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
4:
Odpowiedzi:
|
A. \log_{3}{16}
|
B. \log_{4}{4}
|
|
C. \log_{4}{9}
|
D. 4\cdot \log_{3}{16}
|
|
E. \log_{3}{4}
|
F. \frac{\log_{3}{4}}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{6}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 14\cdot \pi -43
|
B. 5^{-4}
|
|
C. 9\cdot \pi -29
|
D. \frac{\sqrt{\pi}}{9}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{2}{4},9\right)
|
B. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
|
|
C. A=\left(-\frac{1}{4},\frac{1}{3}\right)
|
D. A=\left(\frac{1}{4},3\right)
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
g(x)=5^x.
Funkcja określona wzorem h(x)=-1+g(x+3) z prostą o równaniu
y+2=0:
Odpowiedzi:
|
A. ma nieskończenie wiele punktów wspólnych
|
B. nie ma punktów wspólnych
|
|
C. ma dokładnie jeden punkt wspólny
|
D. ma dokładnie dwa punkty wspólne
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=5
b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20574 ⋅ Poprawnie: 104/159 [65%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie:
3^x\cdot \left(\frac{1}{3}\right)^{x-a}=\left(\frac{1}{27}\right)^{x}
Podaj rozwiązanie tego równania.
Dane
a=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20565 ⋅ Poprawnie: 39/79 [49%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie:
\left(\frac{2}{3}\right)^{\frac{1}{x+a}}=\frac{4}{9}\cdot\left(\frac{2}{3}\right)^{a+x-2}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20550 ⋅ Poprawnie: 17/25 [68%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność:
2^{x+a}+2^{x+a+1}+5\cdot 2^{x+a-2} > 34
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pp-30183 ⋅ Poprawnie: 28/156 [17%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Asymptotą poziomą wykresu funkcji
g(x)=3^x+m jest
prosta
y=a, a funkcja
f
określona jest następująco:
f(x)=g(-x).
Wyznacz m.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Oblicz
f\left(\frac{1}{2}\right)-f\left(-\frac{1}{2}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=5
b=125
c=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)