« Punkty o współrzędnych A=(-4,4) i
C=(-8,1) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(2,-2) i F=(-6,-3) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 6.1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. czworokątem
C. wycinkiem koła
D. trójkątem ostrokątnym
Zadanie 16.1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Punkt A=(-6,-7) jest środkiem okręgu o promieniu
2021. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 18.1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]