Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-12,5) i C=(12,-2) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(4,-4) i F=(-3,6) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prostą k o równaniu y=-2x+5 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(0,5), L=(5,0) i M=(5,8) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(4,-4) i C=(-3,6). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 2\sqrt{149}\pi B. \sqrt{298}\pi
C. \frac{3\sqrt{149}}{2}\pi D. \frac{\sqrt{149}}{4}\pi
E. \sqrt{149}\pi F. \frac{\sqrt{149}}{2}\pi
Zadanie 6.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(4,-4) i C=\left(-3,3\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt S=(4,-4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},6\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(4,-4) i B=(-3,6) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(18,-20) oraz B=(-12,28) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(5,-6) i B=(-4,9) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Punkty A=(-5,1) i B=(25,17) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-3 i x-y=-6.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach x-y+\frac{1}{5}=0 i -6y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ} B. przecinają się pod kątem 60^{\circ}
C. przecinają się pod kątem 45^{\circ} D. są równoległe
Zadanie 14.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt S=(-5,4) jest środkiem okręgu, a odległość punktu A=(15,25) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym B. trójkątem ostrokątnym
C. czworokątem D. wycinkiem koła
Zadanie 16.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Punkty o współrzędnych K=(6,-7) oraz L=(-4,10) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 17.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt A=(-4,10) jest środkiem okręgu o promieniu 2018. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Prosta, do której należą punkty A=(49,-51) i B=(55,-39) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-2,5) i B=(4,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Środek odcinka o końcach (-1,1) i (1,1) należy do prostej o równaniu y+ax=5-2a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm