« Punkty o współrzędnych A=(-12,-12) i
C=(-2,12) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
» Trzy kolejne wierzchołki równoległoboku mają współrzędne:
A=(-8,3), B=(-4,7) i
C=(-5,12). Bok CD tego równoległoboku
zawarty jest w prostej o równaniu CD:x+by+c=0.
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%]
» Prosta x+2y-4=0 zawiera podstawę trapezu
równoramiennego AB, a prosta
2x-y+17=0 jest osią symetrii tego trapezu. Wierzchołki
trapezu mają współrzędne: A=(-2,3),
B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca
bok CD równanie CD:y=ax+b.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%]
» Prosta x-2y+4=0 zawiera podstawę
AB trójkąta równoramiennego ABC o wierzchołkach
A=(0,2) oraz C=(-1,10).
Prosta CD:y=ax+b jest osią symetrii tego trójkąta.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Wyznacz współrzędne wierzchołka B=(x_b,y_b).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat