Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(1,5), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(3,6) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-5,-1) i C=\left(3,-1\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-7,-1) i B=(4,-3) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+\frac{4}{3}=0 i -4y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 30^{\circ}
C. są równoległe D. przecinają się pod kątem 60^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta o równaniu -2x-6y-6=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(2,1) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20604 ⋅ Poprawnie: 3/13 [23%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Punkt C=(x_c,y_c) jest punktem przecięcia prostej x+y+c=0 z odcinkiem o końcach A=(x_a,y_a) i B=(x_b,y_b).

Podaj \frac{|AC|}{|CB|}.

Dane
x_a=-10
y_a=-1
x_b=-4
y_b=3
c=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20635 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dane są punkty A=(-8,-2), B=(-6,-6), C=(-4,-2) i D=(-5,2).

Wyznacz P_{ABCD}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20630 ⋅ Poprawnie: 1/96 [1%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(3,-3) i B=(11,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{21}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30202 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do boku CD prostokąta ABCD należy punkt M=\left(-\frac{22}{3},\frac{1}{3}\right). Ponadto A=(3,1) i B=(-13,5) (odwrotnie do ruchu wskazówek zegara). Wyznacz równanie prostej CD:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz wierzchołek C=(x_c,y_c) tego prostokąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkt A=(4,7) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y+12=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y+21=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm