Podgląd testu : lo2@sp-geom-analit-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-4,-3) i
F=(5,6) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(-4,-3) i
C=\left(5,3\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(4,5\right) i
B=\left(14,5\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Punkty
A=(-6,-4) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(7,9)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+1 i
x-y=3 .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(1,3) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20608 ⋅ Poprawnie: 0/44 [0%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkty
A=(-11,-2) i
C=(-5,2) są przeciwległymi wierzchołkami
kwadratu
ABCD . Prosta
3x+by+c=0 zawiera przekątną
BD tego kwadratu.
Podaj c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Prosta
x+b_1y+c_1=0 zawiera bok
CD tego kwadratu (odwrotnie do ruchu
wskazówek zegara).
Podaj c_1 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Przekątne rombu o wierzchołkach
A=(4,7) i
B=(-12,-6) przecinają się w punkcie
S=(-8,-9) .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt) Punkty
A=(x_A, y_A) ,
B=(x_B, y_B) i
C=(x_C, y_C)
są wierzchołkami trójkąta równoramiennego.
Jaką długość ma najdłuższy bok tego trójkąta?
Dane
x_A=-7
y_A=1
x_B=1
y_B=-7
x_C=2
y_C=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
(1 pkt) Punkt
D=(x_D, y_D) jest środkiem boku
AB tego trójkąta.
Podaj sumę jego współrzędnych, czyli x_D+y_D .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
(1 pkt) Prosta określona równaniem
y=x+b jest
osią symetrii tego trójkąta.
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkty
K=(-7,5) oraz
L
są środkami boków odpowiednio
AC i
BC trójkata
ABC .
Wiadomo, że
\overrightarrow{AK}=[1,6] oraz
\overrightarrow{KL}=[8,4] . Wyznacz równanie
boku
AB tego trójkąta i zapisz go w postaci
kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30229 ⋅ Poprawnie: 0/8 [0%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
AB:3x+y+9=0 ,
BC:7x+3y+1=0 i
AC:x+3y-5=0 wyznaczają trójkąt
ABC .
Symetralna boku
AB ma równanie
x+by+c=0 .
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Punkt
S=(x_s,y_s) jest środkiem okręgu opisanego na
trójkącie
ABC .
Podaj x_s .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż