» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
» Punkt K=(0,14) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-6,2).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%]
Przez punkt (20,5) poprowadzono prostą, która wraz
z osiami układu tworzy trójkąt o polu powierzchni 200
i kąt rozwarty z dodatnią półosią osi Ox.
Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat