Podgląd testu : lo2@sp-geom-analit-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(5,-2) i
F=(3,3) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(5,-2) i
C=\left(3,\frac{3}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Punkty
A=(-1,-1) i
B=(35,26)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=4r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Symetralną odcinka o końcach
A=(8,3) i
B=\left(-\frac{3}{2},3\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Punkty
A=(8,-3) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(4,5)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(-4,-12) i
B=\left(5,24\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Znajdź punkt
A=(x_a,y_a) leżący na prostej
y=2x+c taki, żeby jego odległość od punktu
K=(x_k,y_k) była najmniejsza możliwa.
Podaj x_a .
Dane
x_k=16
y_k=-8
c=-30
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20635 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dane są punkty
A=(1,-3) ,
B=(3,-7) ,
C=(5,-3) i
D=(4,1) .
Wyznacz P_{ABCD} .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20620 ⋅ Poprawnie: 2/15 [13%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Na trójkącie prostokątnym o wierzchołkach
A=(2,3) ,
B=(18,15) i
C=(6,31)
opisano okrąg, a na tym okręgu opisano trójkąt równoboczny.
Oblicz jego pole powierzchni.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkty
K=(-7,3) oraz
L
są środkami boków odpowiednio
AC i
BC trójkata
ABC .
Wiadomo, że
\overrightarrow{AK}=[1,6] oraz
\overrightarrow{KL}=[8,4] . Wyznacz równanie
boku
AB tego trójkąta i zapisz go w postaci
kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30236 ⋅ Poprawnie: 5/14 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Proste o równaniach
x-y-8=0 ,
x+y-16=0 oraz
x-7y-56=0
tworzą trójkąt.
Oblicz długość najkrótszego boku tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Oblicz długość najdłuższego boku tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż