« W kwadracie o wierzchołkach ABCD punkty
K=(-1,0) i L=(4,1) są
środkami boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(2,7). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x+3.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%]
Punkty A=(2,-5) i B=(-1,1)
wyznaczają podstawę trójkąta równoramiennego ABC.
Prosta o równaniu y=x-7 zawiera bok
AC tego trójkąta. Wyznacz
C=(x_c, y_c).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Oś symetrii tego trójkąta ma równanie y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat