Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(1,4) i F=(3,5) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Punkt A=(11,-13) jest środkiem okręgu o promieniu
2022. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
» Trzy kolejne wierzchołki równoległoboku mają współrzędne:
A=(-2,3), B=(2,7) i
C=(1,12). Bok CD tego równoległoboku
zawarty jest w prostej o równaniu CD:x+by+c=0.
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%]
» Wysokość opuszczona z wierzchołka C trójkąta
równoramiennego ABC o podstawie
AB zawiera się w prostej
x+2y-30=0. Wiadomo, że A=(-3,-11)
i C=(0,15).
Podstawa AB tego trójkata zawiera się w prostej
o równaniu ax+y+c=0.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat