Podgląd testu : lo2@sp-geom-analit-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-2,3) , do którego
należy punkt o współrzędnych
A=(5,1) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Punkty
A=(-1,1) i
B=(35,28)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=4r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
S=(1,3) jest środkiem okręgu, a
odległość punktu
A=(37,30) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prosta o równaniu
-6x+6y+18=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-2+\sqrt{6},2+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Znajdź punkt
A=(x_a,y_a) leżący na prostej
y=2x+c taki, żeby jego odległość od punktu
K=(x_k,y_k) była najmniejsza możliwa.
Podaj x_a .
Dane
x_k=15
y_k=-8
c=-28
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Przekątne wielokąta o wierzchołkach
A=(5,3) ,
B=(2,1) ,
C=(0,-7) ,
D=(3,-6) przecinają się w punkcie o współrzędnych
S=(x,y) .
Podaj x .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta
k przechodząca przez punkt
C=(12,16)
przecina osie układu współrzędnych w punktach
A i
B=(x_b,y_b) i jest prostopadła o odcinka
OC :
Podaj x_b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-20,12) oraz prosta
k o równaniu
y=3x+8 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30220 ⋅ Poprawnie: 2/8 [25%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Punkty
A=(3,-8) i
B=(8,-1)
tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie
x-2y-10=0 . Wyznacz współrzędne wierzchołka
C=(x_c, y_c) tego trójkąta.
Podaj x_c .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Wyznacz równanie boku
AC:ax+y+c=0 .
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż