« Punkt o współrzędnych oraz punkty A=(3,8),
B i C są wierzchołkami trójkąta równoramiennego
o podstawie AB, a punkt
D=(5,9) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka C.
Wówczas punkt B ma współrzędne B=(x_B, y_B).
Wyznacz współrzędne x_B i y_B.
Odpowiedzi:
x_B
=
(wpisz liczbę całkowitą)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
«« Punkty K=(-1,-1) oraz L
są środkami boków odpowiednio AC i
BC trójkata ABC.
Wiadomo, że \overrightarrow{AK}=[1,6] oraz
\overrightarrow{KL}=[8,4]. Wyznacz równanie
boku AB tego trójkąta i zapisz go w postaci
kierunkowej y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%]
» Punkty A=(-4,5), B=(8,9)
i C=(2,13) sa wierzchołkami trójkąta. Wysokość tego
trójkąta opuszczona z wierzchołka C przecięła
bok AB w punkcie D=(x_d,y_d).
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Prosta o równaniu 10x+by+c=0 jest równoległa do boku
BC trójkąta i przechodzi przez punkt D.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat