Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(2,5) i F=(-5,-6) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
Punkty A=(8,8) i B=(10,10)
wyznaczają jedną z podstaw trapezu ABCD. Punkt
O=\left(2,\frac{13}{2}\right) jest środkiem drugiej podstawy
CD tego trapezu, przy czym
|CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i
D=(x_d,y_d).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%]
« Prosta k przechodzi przez punkty
A=(7,6)
i B=(13,4). Punkt D=(5,9)
jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością
trójkąta ABC opuszczoną z punktu C,
która przecina prostą k w punkcie E=(x_e,y_e).
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat