» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Trzy wierzchołki równoległoboku ABCD mają współrzędne
A=\left(-\frac{5}{2},-12\right), B=(x_b,y_b) i
D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).
Bok BC tego równoległoboku
zawarty jest w prostej o równaniu y=-x-\frac{15}{2}, zaś bok
CD w prostej o równaniu y=3x+17.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%]
Punkt A=(0,3) należy do prostych
k i l. Prosta
l wraz z osiami układu ogranicza trójkąt
o polu 9, zaś prosta k
trójkąt o polu \frac{57}{4}. Proste te przecinają dodatnią
półoś Ox w punktach P i
Q.
Oblicz pole trójkąta o wierzchołkach w punktach A,
P i Q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pp-30206 ⋅ Poprawnie: 0/44 [0%]
» Wysokość opuszczona z wierzchołka C trójkąta
równoramiennego ABC o podstawie
AB zawiera się w prostej
x+2y-23=0. Wiadomo, że A=(-6,-13)
i C=(-3,13).
Podstawa AB tego trójkata zawiera się w prostej
o równaniu ax+y+c=0.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat