Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11437  
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(x_A, y_A), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(x_D,y_D) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Dane
x_A=4
y_A=4
x_D=6
y_D=5
Odpowiedzi:
x_B= (wpisz liczbę zapisaną dziesiętnie)
y_B= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11230  
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(2,6), do którego należy punkt o współrzędnych A=(4,4) w najprostszej postaci \frac{a\sqrt{b}}{c}\cdot\pi, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11228  
Podpunkt 3.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(3,3) i B=(8,6) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11236  
Podpunkt 4.1 (1 pkt)
 Proste o równaniach x-y+\frac{5}{4}=0 i -6y+5=0:
Odpowiedzi:
A. są równoległe B. są prostopadłe
C. przecinają się pod kątem 30^{\circ} D. przecinają się pod kątem 45^{\circ}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11235  
Podpunkt 5.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m-1 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20598  
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu y=ax+b przecina prostą a_1x+b_1y+c_1=0 w punkcie o rzędnej równej 0 i jest do niej prostopadła.

Podaj a.

Dane
a_1=-5
b_1=-3
c_1=\frac{-25}{2}=-12.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20605  
Podpunkt 7.1 (1 pkt)
 » Znajdź punkt A=(x_a,y_a) leżący na prostej y=2x+c taki, żeby jego odległość od punktu K=(x_k,y_k) była najmniejsza możliwa.

Podaj x_a.

Dane
x_k=16
y_k=-2
c=-24
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20618  
Podpunkt 8.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(4,3) i B=(12,7), zaś C=(6,10) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20624  
Podpunkt 9.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(7,24) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30200  
Podpunkt 10.1 (1 pkt)
 Punkt A=\left(2,\frac{13}{2}\right) jest wierzchołkiem kwadratu ABCD o środku symetrii O=\left(\frac{25}{4},\frac{43}{8}\right) (odwrotnie do ruchu wskazówek zegara). Wyznacz C=(x_c,y_c) oraz D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30226  
Podpunkt 11.1 (1 pkt)
 » Punkty B=(7,1) i C=(17,-10) są wierzchołkami trójkąta ABC. W prostej 7x-y-48=0 zawiera się bok AB, zaś w prostej 2x+y-24=0 bok AC tego trójkąta. Z wierzchołka B opuszczono wysokość, która przecięła bok AC w punkcie E=(x_e, y_e).

Wyznacz x_e.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm