Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-3,5), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(-1,6) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{13}{4},-5\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(3,4).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(2\sqrt{3},3\right) i B=\left(12\sqrt{3},3\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkty A=(-5,2) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(2,-4) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym B. wycinkiem koła
C. czworokątem D. trójkątem ostrokątnym
Zadanie 6.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(-4-2\sqrt{3},7 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Prosta y=-2x-4 jest styczną do okręgu o środku w punkcie S=(1,-2). Wyznacz współrzędne punktu styczności P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkty A=(8,-2), B=(-1,0), C=(-5,-6), D=(2,-11) i E=(7,-9) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Prosta 4x-5y+20=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=22.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30202 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do boku CD prostokąta ABCD należy punkt M=\left(-\frac{1}{3},-\frac{8}{3}\right). Ponadto A=(10,-2) i B=(-6,2) (odwrotnie do ruchu wskazówek zegara). Wyznacz równanie prostej CD:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz wierzchołek C=(x_c,y_c) tego prostokąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Prosta k przechodzi przez punkty B=(0,-4) i P=(10,8). Prosta l:2x+y-14=0 przecina prostą k w punkcie A=(x_a,y_a) i prostą o równaniu y=-4 w punkcie C=(x_c,-4).

Oblicz x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm