Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(3,2), L=(8,-3) i M=(8,5) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(1,-3), do którego należy punkt o współrzędnych A=(-6,-6) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(1,1) i promieniu długości 3\sqrt{5} należy punkt:
Odpowiedzi:
A. (-4,-2) B. (-6,-7)
C. (-1,-1) D. (-5,-7)
E. (-2,-5) F. (1,-8)
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach x-y+\frac{1}{2}=0 i -2y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są równoległe
C. są prostopadłe D. przecinają się pod kątem 60^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt A=(-15,-15) jest środkiem okręgu o promieniu 2019. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+1 oraz m+x+2y-12=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-11
x_a=-\frac{3}{2}=-1.500000000000000
y_a=-\frac{9}{2}=-4.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(1,-10) i C=(-3,-3).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-20625 ⋅ Poprawnie: 29/80 [36%] Rozwiąż 
Podpunkt 9.1 (4 pkt)
 Oblicz pole powierzchni figury ograniczonej przez wykres funkcji f(x)=ax+b oraz osie układu współrzędnych.
Dane
a=\frac{1}{4}=0.250000000000000
b=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz D=(x_d,y_d).

Podaj x_d.

Dane
x_a=-7
y_a=-1
x_b=1
y_b=-7
x_c=7
y_c=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30238 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane są punkty A=(2,-8), B=(-4,-2) i C=(-7,-11), które są wierzchołkami trójkąta, a prosta o równaniu x+by+c=0 jest osią symetrii tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm