Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(5,0) i L=(-3,-2) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=(4,2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},-6\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(3,1) i promieniu długości 6\sqrt{2} należy punkt:
Odpowiedzi:
A. (-3,-5) B. (-1,-8)
C. (-5,-8) D. (-2,-8)
E. (-3,-2) F. (-6,-3)
Zadanie 4.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkty A=(-3,-5) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(8,-1) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Punkty A=(-5,-4) i B=(43,16) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(3,-6) i B=\left(-4,15\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Znajdź punkt A=(x_a,y_a) leżący na prostej y=2x+c taki, żeby jego odległość od punktu K=(x_k,y_k) była najmniejsza możliwa.

Podaj x_a.

Dane
x_k=9
y_k=-10
c=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(1,-9) i C=(-3,-2).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Prosta 7x-6y+42=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=35.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x+\frac{77}{10} zawiera bok AB równoległoboku ABCD, a prosta y=-7x+\frac{165}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(\frac{13}{2},3\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30226 ⋅ Poprawnie: 3/8 [37%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Punkty B=(0,-7) i C=(10,-18) są wierzchołkami trójkąta ABC. W prostej 7x-y-7=0 zawiera się bok AB, zaś w prostej 2x+y-2=0 bok AC tego trójkąta. Z wierzchołka B opuszczono wysokość, która przecięła bok AC w punkcie E=(x_e, y_e).

Wyznacz x_e.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm