Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-4,-1) i L=(2,-5) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-1,2), do którego należy punkt o współrzędnych A=(-5,-4) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Punkty A=(-2,-8) i B=(8,16) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=5r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkty A=(-6,-2) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(3,-8) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Punkty A=(-6,-2) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(3,-8) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20593 ⋅ Poprawnie: 170/416 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Proste (m+a)x-y=3 i y=(m-a)x+\sqrt{2} są prostopadłe.

Podaj najmniejsze możliwe m.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20608 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkty A=(-12,-1) i C=(-6,3) są przeciwległymi wierzchołkami kwadratu ABCD. Prosta 3x+by+c=0 zawiera przekątną BD tego kwadratu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Prosta x+b_1y+c_1=0 zawiera bok CD tego kwadratu (odwrotnie do ruchu wskazówek zegara).

Podaj c_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkty A=(1,-3), B=(-8,-5), C=(-12,1), D=(-5,6) i E=(0,4) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt A=(0,3) należy do prostych k i l. Prosta l wraz z osiami układu ogranicza trójkąt o polu \frac{21}{2}, zaś prosta k trójkąt o polu \frac{75}{4}. Proste te przecinają dodatnią półoś Ox w punktach P i Q.

Oblicz pole trójkąta o wierzchołkach w punktach A, P i Q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30205 ⋅ Poprawnie: 0/16 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(-6,-1) i D=(-8,3) są wierzchołkami rombu (odwrotnie do ruchu wskazówek zegara), którego przekątna AC zawiera się w prostej o równaniu y=2x+11.

Przekątna BC tego rombu opisana jest równaniem BC:y=ax+b. Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Punkt S=(x_s,y_s) jest punktem przecięcia przekątnych tego rombu.

Podaj y_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz współrzędne wierzchołeka B=(x_b,y_b) tego rombu.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30229 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach AB:3x+y+11=0, BC:7x+3y+5=0 i AC:x+3y-7=0 wyznaczają trójkąt ABC. Symetralna boku AB ma równanie x+by+c=0.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem okręgu opisanego na trójkącie ABC.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm