Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-6,-11) i C=(6,5) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(4,-6), do którego należy punkt o współrzędnych A=(6,-2) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Punkty A=(-1,1) i B=(9,25) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkty A=(4,-9) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(5,7) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+4=0 i -7y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ} B. przecinają się pod kątem 60^{\circ}
C. przecinają się pod kątem 45^{\circ} D. są równoległe
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+4 oraz m+x+2y-13=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20603 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b) oraz punkt K\in AB taki, że |AK|=\frac{1}{4}|AB|. Wyznacz współrzędne punktu K=(x_k,y_k).

Podaj x_k.

Dane
x_a=4
y_a=-2
x_b=12
y_b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20614 ⋅ Poprawnie: 11/60 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Trzy kolejne wierzchołki równoległoboku mają współrzędne: A=(0,-10), B=(4,-6) i C=(3,-1). Bok CD tego równoległoboku zawarty jest w prostej o równaniu CD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane są punkty A=(5,-6) i B=\left(\frac{13}{2},\frac{15}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30200 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt A=\left(-1,-\frac{5}{2}\right) jest wierzchołkiem kwadratu ABCD o środku symetrii O=\left(\frac{13}{4},-\frac{29}{8}\right) (odwrotnie do ruchu wskazówek zegara). Wyznacz C=(x_c,y_c) oraz D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30223 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste \sqrt{3}x+3y=-12+4\sqrt{3} i x=4 zawierają odpowiednio boki AC i BC trójkąta równobocznego ABC, w którym punkt P=\left(\frac{11}{2},\frac{-8-3\sqrt{3}}{2}\right) jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara). Wyznacz punkt B=(x_b, y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm