» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
» Na prostej o równaniu y=2x+21 leży
wierzchołek D rombu ABCD,
w którym A=(-5,-3) i C=(-3,2).
Wyznacz wierzchołki B=(x_b,y_b) i
D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%]
» W trójkącie ABC punkty
A=(-9,-1) i B=(1,-1) są
końcami przeciwprostokątnej, natomiast punkt C
leży na prostej o równaniu x-y+10=0. Wyznacz
współrzędne punktu C=(x_c,y_c).
Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła
bok BC w punkcie D=(x_d,y_d).
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat