Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(4,-7) i B=(8,6) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(8,-4).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (6,-1) od prostej o równaniu 2x-y-9=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 9x^2-30x+y^2+6y-30\leqslant 0 opisuje:
Odpowiedzi:
A. koło B. okrąg
C. zbiór pusty D. całą płaszczyznę
E. punkt F. dwie przecinające się proste
Zadanie 6.  2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta y=-2x+4 jest styczną do okręgu o środku w punkcie S=(4,0). Wyznacz współrzędne punktu styczności P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
W rombie o boku długości 5 końcami przekątnej są punkty A=(-9,5) i B=(-1,9). Wyznacz współrzędne pozostałych wierzchołków tego rombu.

Podaj sumę rzędnych dwóch pozostałych wierzchołków.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj sumę odciętych dwóch pozostałych wierzchołków.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20391 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Wyznacz miarę kąta między stycznymi do okręgu x^2+y^2+8x-2y+12=0 poprowadzonymi przez punkt A=(-1,0).

Podaj miarę stopniową tego kąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30197 ⋅ Poprawnie: 5/26 [19%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta y=2x-12 zawiera przekątną BD kwadratu ABCD o wierzchołku A=\left(8,-\frac{1}{2}\right).
Wyznacz wierzchołek C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Wyznacz pole powierzchni tego kwadratu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W trójkącie ABC punkty A=(1,-2) i B=(11,-2) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y-1=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30298 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
« Styczne do okręgu x^2+y^2+2x-6y=10 są nachylone do osi Ox pod takim kątem \alpha, że 2\cos\alpha+\sin\alpha=0. Wyznacz równania tych stycznych.

Zapisz równania stycznych w postaci kierunkowej y=mx+b_1 i y=mx+b_2. Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj większa z liczb b_1 i b_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm