Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(0,8), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(2,9) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(3,2) i B=(-2,-5) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(14,-4) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10198 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem punktu A=(3,2) w jednokładności o środku S=(1,0) jest punkt B=(4,3).

Oblicz skalę tej jednokładności.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (12,0) i (0,-12).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(3,-2), B=(7,0) i C=(4,4). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20365 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{-6-5\sqrt{3}}{3}=-4.8867513459481288
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{3+5\sqrt{3}}{3}=3.8867513459481288
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20407 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b), przy czym B=J^k_S(A). Wyznacz S=(x_s,y_s).

Podaj x_s.

Dane
x_a=9
y_a=0
x_b=3
y_b=3
k=\frac{1}{3}=0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30193 ⋅ Poprawnie: 28/61 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ABC ma wierzchołki: A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c).

Wyznacz długość najkrótszej wysokości tego trójkąta.

Dane
x_a=3
y_a=2
x_b=3
y_b=1
x_c=7
y_c=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Wyznacz długość najdłuższej wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=4
y_a=0
x_b=10
y_b=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30285 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
« Punkt C trójkąta o wierzchołkach A=(-1,1) i B=(2,2) należy do prostej x-y+4=0, zaś pole trójkąta ABC wynosi 5.

Podaj najmniejszą możliwą rzędną punktu C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj największą możliwą odciętą punktu C.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm