«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y-\frac{5}{2}=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(-2,11) i C=(-7,11) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pp-30224 ⋅ Poprawnie: 0/13 [0%]
» W prostej o równaniu 3x-4y-14=0 zawiera się
przeciwprostokątna AB trójkąta
ABC, przy czym A=(-6,-8),
C=(-3,-4) oraz B=(x_b,y_b).
Prosta o równaniu 3x+by+c=0 zawiera bok BC
tego trójkąta.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30309 ⋅ Poprawnie: 0/0
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-a+5)^2+(y+m-a-b)^2=16 i
(x-2m+a)^2+(y+m-a-b)^2=9 przecinają się w dwóch
różnych punktach.
Rozwiazanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych
wszystkich końców tych przedziałów, które są liczbami.
Dane
a=-6 b=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Podaj długość rozwiązania, czyli łączną długość tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat