Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(3,1) i C=(-1,5). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 8\sqrt{2}\pi B. 4\sqrt{2}\pi
C. 8\pi D. 6\sqrt{2}\pi
E. 2\sqrt{2}\pi F. \sqrt{2}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+1 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (4,-2) i (6,-2) należy do prostej o równaniu y+ax=2+3a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-2,2). Punkt P=(2,2) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10222 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Ustal, ile jest okręgów o promieniu 1, które są styczne do prostej o równaniu y=1 i okręgu o równaniu x^2-8x+y^2-10y+31=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Na prostej o równaniu y=2x+5 leży wierzchołek D rombu ABCD, w którym A=(4,-1) i C=(6,4). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20365 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{-3\sqrt{3}}{3}=-1.7320508075688773
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{9+3\sqrt{3}}{3}=4.7320508075688773
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20399 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Środkiem okręgu stycznego do osi Ox w punkcie (-1,0) i przechodzącego przez punkt A=(2,9), jest punkt S=(x_s,y_s).

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30260 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Punkt S=\left(\frac{19}{3},-\frac{1}{3}\right) jest środkiem ciężkości trójkąta ABC, w którym A=(0,-2) oraz \overrightarrow{AB}=[7,0]. Wyznacz środek D=(x_D,y_D) boku BC.

Podaj x_D.

Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (1 pkt)
 Wyznacz równanie boku BC: y=ax+b.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.4 (1 pkt)
 Podaj miarę stopniową kąta rozwartego tego trójkąta.
Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30220 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(2,-5) i B=(7,2) tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie x-2y-3=0. Wyznacz współrzędne wierzchołka C=(x_c, y_c) tego trójkąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz równanie boku AC:ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30289 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Prosta y=x-2 przecina parabolę y=-x^2+12x-30 w dwóch punktach A i B należących do okręgu o o promieniu długości \sqrt{5}.

Podaj najmniejszą możliwą odległość środka okręgu o od początku układu współrzędnych.

Odpowiedź:
d_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największą możliwą odległość środka okręgu o od początku układu współrzędnych.
Odpowiedź:
d_{max}= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm