(1 pkt)
Obrazami punktów o współrzędnych A=(-2,16) oraz B=(18,-20)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę całkowitą)
y_S
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Bok trójkąta zawiera się w prostej o równaniu 2x+3y-5=0. W
trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (0,3).
Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.
Wyznacz największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10203 ⋅ Poprawnie: 0/0
Do okręgu o równaniu (x-9)^2+(y+1)^2=10 należą punkty
M=(10,-4) oraz N=(12,-2).
Punkt P tego okręgu spełnia warunek
|MP|=|NP|. Wyznacz współrzędne punktu
P.
Podaj najmniejszą z odciętych wszystkich znalezionych punktów
P.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą z rzędnych wszystkich znalezionych punktów
P.
Odpowiedź:
y_{max}=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 9.4 pkt ⋅ Numer: pp-30213 ⋅ Poprawnie: 0/9 [0%]
» Wierzchołki trapezu ABCD mają współrzędne:
A=(-2,6), B=(-1,10),
C=(-5,11) i D=(-10,8).
Wysokość tego trapezu opuszczona z wierzchołka C zawiera się w prostej
o równaniu ax+y+c=0 i przecina podstawę AD
w punkcie E.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Oblicz pole powierzchni trójkąta DEC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Oblicz pole powierzchni trapezu ABCD.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pp-30236 ⋅ Poprawnie: 5/14 [35%]