Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-5,1) i L=(-2,0) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-2,6) i B=(-3,1) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-5,5) i B=(1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-10,3) od prostej o równaniu 2x-y+18=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x+4)^2+(y-6)^2=3 z prostą określoną wzorem y=2+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20365 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{4\sqrt{3}}{3}=2.3094010767585031
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{9-4\sqrt{3}}{3}=0.6905989232414969
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
x_a=-2
y_a=0
x_b=0
y_b=4
x_c=-4
y_c=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30188 ⋅ Poprawnie: 25/78 [32%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Punkt P=(2,2) jest środkiem boku AB trójkąta ABC, w którym: A=(-5,-4) i \overrightarrow{BC}=[-8,4]. Wyznacz równanie boku AC tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przez punkt (8,2) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 32 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30279 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Punkty A i C, których współrzędne spełniają układ rówńań \begin{cases} 2x+y+1=0 \\ y=x^2-9 \end{cases} wyznaczają jedną z przekątnych rombu o polu powierzchni P_{ABCD}=30. Oblicz B=(x_B,y_B) i D=(x_D,y_D).

Podaj x_B+x_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj y_B+y_D.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm