Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-2,-6) i C=(2,-1). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{41}}{2}\pi B. \frac{\sqrt{41}}{4}\pi
C. \frac{\sqrt{41}}{2}\pi D. 2\sqrt{41}\pi
E. \sqrt{41}\pi F. \sqrt{82}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+8 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (4,-5) i (6,-5) należy do prostej o równaniu y+ax=-1+3a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Trójkąt równoboczny o wysokości h jest opisany na okręgu o równaniu x^2-8x+16+y^2+6y+\frac{35}{4}=0.

Podaj liczbę h.

Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. r=2 B. r \lessdot 2
C. 0 \lessdot r \lessdot 1 D. r > 2
E. 1 \lessdot r \lessdot 2 F. r=1
Zadanie 6.  2 pkt ⋅ Numer: pp-20604 ⋅ Poprawnie: 3/13 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Punkt C=(x_c,y_c) jest punktem przecięcia prostej x+y+c=0 z odcinkiem o końcach A=(x_a,y_a) i B=(x_b,y_b).

Podaj \frac{|AC|}{|CB|}.

Dane
x_a=-4
y_a=-2
x_b=2
y_b=2
c=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20367 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta x+2y-\frac{8}{3}=0 zawiera przekątną AC kwadratu ABCD o obwodzie 16\sqrt{10} i wierzchołku B=\left(6,\frac{25}{3}\right).
Wyznacz A=(x_a,y_a) (odwrotnie do ruchu wskazówek zegara).

Podaj x_a+y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Wyznacz D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).

Podaj x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-1,0), B=(6,-7) i C=(7,-4) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30188 ⋅ Poprawnie: 25/78 [32%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Punkt P=(-1,-1) jest środkiem boku AB trójkąta ABC, w którym: A=(-8,-7) i \overrightarrow{BC}=[-8,4]. Wyznacz równanie boku AC tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(1,-2), B=(6,4) i C=(4,7) są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta, która przecięła bok AC w punkcie D=(x_d,y_d). Wysokość ta opisana jest wzorem BD:y=ax+b

Wyznacz b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa do boku AB trójkąta.

Podaj b_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30349 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
» Dane są okręgi o równaniach x^2+y^2-14x-8y+56=0 i x^2+y^2-(2a+2)x+4y+(a+1)^2-77=0. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny.

Podaj najmniejsze możliwe a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj sumę wszystkich możliwych wartości a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm