Punkt A=(-11,-1) jest środkiem okręgu o promieniu
2022. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0
« Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych
A=(-2,4). Punkt P=(2,4)
jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o
równaniu (x-a)^2+(y-b)^2=r^2, gdzie.
r > 0.
Podaj liczby a, b i
r.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
r
=
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pr-10212 ⋅ Poprawnie: 0/0
W trapezie ABCD dane są wierzchołki: A=(-8,-5),
B=(-4,-3) i C=(-7,1). Kąty przy
wierzchołkach A i D=(x_d,y_d) są proste.
Prosta zawierająca podstawę CD tego trapezu ma równanie
BD:y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.4 pkt ⋅ Numer: pr-20360 ⋅ Poprawnie: 0/0
Przez punkt (8,2) poprowadzono prostą, która wraz
z osiami układu tworzy trójkąt o polu powierzchni 32
i kąt rozwarty z dodatnią półosią osi Ox.
Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30292 ⋅ Poprawnie: 0/0