Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11225  
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(1,-4) i L=(0,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11537  
Podpunkt 2.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(-30,14) oraz B=(20,24) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę zapisaną dziesiętnie)
y_S= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11246  
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(14,-33) i B=(20,51) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10230  
Podpunkt 4.1 (1 pkt)
 Trójkąt równoboczny o wysokości h jest opisany na okręgu o równaniu x^2-4x+4+y^2+10y+\frac{51}{4}=0.

Podaj liczbę h.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10220  
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-6)^2+(y+8)^2=5 styczna jest prosta określona równaniem 2x+y+m-3=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20635  
Podpunkt 6.1 (2 pkt)
 Dane są punkty A=(-3,-4), B=(-1,-8), C=(1,-4) i D=(0,0).

Wyznacz P_{ABCD}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20365  
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{-12-\sqrt{3}}{3}=-4.5773502691896258
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{-3+\sqrt{3}}{3}=-0.4226497308103742
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20388  
Podpunkt 8.1 (2 pkt)
Prosta 3x-4y-53=0 jest sieczną okręgu o środku S=(-2,4) i przecina ten okrąg w punktach A i B takich, że |AB|=40.

Oblicz promień tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30210  
Podpunkt 9.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(3,-8), B=(7,4) i C=(0,2), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-30225  
Podpunkt 10.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-18=0. Wiadomo, że A=(-3,-17) i C=(0,9). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30283  
Podpunkt 11.1 (2 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(0,y_c) są wierzchołkami trójkąta. Wiedząc, że P_{\triangle ABC}=32, oblicz y_c.

Podaj najmniejsze możliwe y_c.

Dane
x_a=-2
y_a=-8
x_b=8
y_b=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm