Punkt A=(0,8) należy do prostych
k i l. Prosta
l wraz z osiami układu ogranicza trójkąt
o polu 40, zaś prosta k
trójkąt o polu 62. Proste te przecinają dodatnią
półoś Ox w punktach P i
Q.
Oblicz pole trójkąta o wierzchołkach w punktach A,
P i Q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pr-20399 ⋅ Poprawnie: 0/0
« Dwa wierzchołki trójkąta ABC mają współrzędne
A=(3,6) i B=(2,9). Trzeci
wierzchołek C tego trójkąta należy do prostej
x=p i jest tak położony, że trójkąt
ABC jest prostokątny.
Wyznacz współrzędne punktu C=(x_c,y_c).
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj sumę wszystkich wartości y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30349 ⋅ Poprawnie: 0/0
» Dane są okręgi o równaniach
x^2+y^2-14x-8y+56=0 i
x^2+y^2-(2a+2)x+4y+(a+1)^2-77=0.
Wyznacz wszystkie wartości parametru a,
dla których te okręgi mają dokładnie jeden punkt wspólny.
Podaj najmniejsze możliwe a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj sumę wszystkich możliwych wartości a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat