» Na prostej o równaniu y=2x+17 leży
wierzchołek D rombu ABCD,
w którym A=(-3,-3) i C=(-1,2).
Wyznacz wierzchołki B=(x_b,y_b) i
D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.4 pkt ⋅ Numer: pr-20360 ⋅ Poprawnie: 0/0
W trójkącie ABC dane są: wierzchołki
A=(1,-7) i B=(4,-3),
równanie boku BC:x+2y+2=0 i równanie
środkowej AD:5x-y-12=0.
Wysokość tego trójkąta CE opisana jest
równaniem y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%]
Punkty A=(-4,-7) i B=(-7,-1)
wyznaczają podstawę trójkąta równoramiennego ABC.
Prosta o równaniu y=x-3 zawiera bok
AC tego trójkąta. Wyznacz
C=(x_c, y_c).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
Oś symetrii tego trójkąta ma równanie y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30273 ⋅ Poprawnie: 0/0
Poprowadzono styczne do paraboli y=\frac{1}{4}x^2+3
przechodzące przez początek układu współrzędnych. Oblicz miarę stopniową
kąta ostrego między tymi stycznymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat