Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(4,-4), do którego należy punkt o współrzędnych A=(6,2) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty A=(-3,-8) i B=(21,-1) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=5r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach x-y+\frac{2}{5}=0 i -7y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 60^{\circ} D. przecinają się pod kątem 45^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pr-10198 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem punktu A=(1,-6) w jednokładności o środku S=(2,6) jest punkt B=(0,-18).

Oblicz skalę tej jednokładności.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10203 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W jednokładności o środku P=(-2,8) i skali k=-2 obrazem okręgu o równaniu x^2+10x+y^2-18y+90=0 jest okrąg: określony wzorem:
Odpowiedzi:
A. (x-9)^2+(y+1)^2=61 B. (x-9)^2+(y+2)^2=60
C. (x-9)^2+(y+2)^2=64 D. (x+9)^2+(y-2)^2=64
Zadanie 6.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(4,19) i B=(-12,6) przecinają się w punkcie S=(-8,3).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(5,12) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dany jest okrąg o równaniu o:x^2+y^2-4x+14y+49=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30192 ⋅ Poprawnie: 10/72 [13%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wektor \overrightarrow{CD}=[-3,-3] wyznacza bok prostokąta ABCD, w którym C=(-2,14). Wiadomo ponadto, że A\in k:y=\frac{1}{2}x+12.
Wyznacz równanie prostej AC:x+by+c=0.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Wyznacz równanie prostej BD:x+by+c=0.

Podaj b+c.

Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta k przechodzi przez punkty B=(-6,5) i P=(4,17). Prosta l:2x+y-11=0 przecina prostą k w punkcie A=(x_a,y_a) i prostą o równaniu y=5 w punkcie C=(x_c,5).

Oblicz x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30309 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-a+5)^2+(y+m-a-b)^2=16 i (x-2m+a)^2+(y+m-a-b)^2=9 przecinają się w dwóch różnych punktach.

Rozwiazanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, które są liczbami.

Dane
a=-4
b=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Podaj długość rozwiązania, czyli łączną długość tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm