Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(-2,3), L=(3,-2) i M=(3,6) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-4,2) i B=(5,-1) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym B. trójkątem prostokątnym
C. wycinkiem koła D. czworokątem
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-13,-1) i Q=\left(-\frac{29}{5},\frac{3}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10201 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Do okręgu o równaniu (x+4)^2+(y-2)^2=\frac{m+1}{2} należy punkt o współrzędnych (5,-1).

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20600 ⋅ Poprawnie: 17/135 [12%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=15. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=-5
y_a=3
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20363 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkt B=(x_b,y_b) jest symetryczny do punktu A=(x_a,y_a) względem prostej o równaniu ax+by+c=0

Podaj x_b.

Dane
x_a=-12
y_a=\frac{9}{2}=4.500000000000000
a=2
b=-1
c=15.0000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(0,5) i przechodzi przez punkt A=(6,11).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dany jest punkt A=(-16,14) oraz prosta k o równaniu y=3x-2, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt A=(4,10) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y+6=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y+18=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30299 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
» Okrąg (x-a)^2+(y-b)^2=r^2 jest styczny do osi Oy w punkcie C=(0,5) i przechodzi przez punkt M=(4,9).

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Punkty A=(x_a,y_a) i B=(x_b,y_b) należą do tego okręgu i wraz z punktem C tworzą trójkąt równoboczny.

Podaj x_a+x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Podaj max(y_a,y_b).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm