Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(2,1) i F=(1,-3) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(4,1) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym B. czworokątem
C. wycinkiem koła D. trójkątem prostokątnym
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-3,3) od prostej o równaniu 2x-y+4=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta o równaniu x-y-9=0 oraz okrąg określony równaniem (x-6)^2+y^2+2y-1=0. Wówczas:
Odpowiedzi:
A. prosta i okrąg są rozłączne B. prosta jest styczną do okręgu
C. środek okręgu należy do prostej D. prosta przecina okrąg w dwóch punktach
Zadanie 6.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(12,12) i B=(-4,-1) przecinają się w punkcie S=(0,-4).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(5,12) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta y=mx+n jest styczną do okręgu o równaniu x^2+y^2+ax+by+c=0 i tworzy z osią Ox kąt o mierze 120^{\circ}.

Podaj najmniejsze możliwe n.

Dane
a=-6
b=-2
c=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe n.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(2,0), B=(8,2), C=(-2,8) i D=(-5,7) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(2,3), B=(-2,6) i C=(0,2) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30274 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Proste a_1x+b_1y+c_1=0 oraz a_2x+b_2y+c_2=0 tworzą kąt, którego dwusieczną jest prosta ax+y+c=0.

Podaj najmniejsze możliwe c.

Dane
a_1=4
b_1=2
c_1=-9
a_2=11
b_2=-2
c_2=-13
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm