Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(4,6), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(6,7) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(2,4) i B=(-3,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{1}{2} B. \frac{1}{4}
C. -\frac{1}{2} D. -\frac{1}{4}
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(-6,3).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10198 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem punktu A=(4,-3) w jednokładności o środku S=(-4,2) jest punkt B=(4,-3).

Oblicz skalę tej jednokładności.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (3,0) i (0,-3).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Na prostej o równaniu y=2x+20 leży wierzchołek D rombu ABCD, w którym A=(-3,0) i C=(-1,5). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(0, 6) jest punktem przecięcia przekątnych, a punkt A=(-1,-1) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
» Okrąg o środku S=(x_s,y_s) jest styczny do prostych 2x+y+10=0 i 2x+y-10=0 i przechodzi przez punkt A=(-3,0).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30202 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Do boku CD prostokąta ABCD należy punkt M=\left(-\frac{19}{3},\frac{10}{3}\right). Ponadto A=(4,4) i B=(-12,8) (odwrotnie do ruchu wskazówek zegara). Wyznacz równanie prostej CD:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz wierzchołek C=(x_c,y_c) tego prostokąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(-10,3), B=(2,7) i C=(-4,11) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30273 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
Poprowadzono styczne do paraboli y=\frac{1}{4}x^2+3 przechodzące przez początek układu współrzędnych. Oblicz miarę stopniową kąta ostrego między tymi stycznymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm