Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-1,1) i B=(-2,0).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{3}{4} B. -\frac{3}{4}
C. -\frac{3}{2} D. \frac{3}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=(-1,-4) jest środkiem okręgu, a odległość punktu A=(35,23) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość prostych równoległych y=-\frac{3}{4}x-\frac{49}{2} i -3x-4y+122=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Z koła opisanego nierównością x^2-12x+y^2+2y+21\leqslant 0 wycięto kąt środkowy tego koła o mierze 72^{\circ}. Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-21
x_a=\frac{11}{2}=5.500000000000000
y_a=-\frac{1}{2}=-0.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
W rombie o boku długości 5 końcami przekątnej są punkty A=(-9,5) i B=(-1,9). Wyznacz współrzędne pozostałych wierzchołków tego rombu.

Podaj sumę rzędnych dwóch pozostałych wierzchołków.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj sumę odciętych dwóch pozostałych wierzchołków.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta y=mx+n jest styczną do okręgu o równaniu x^2+y^2+ax+by+c=0 i tworzy z osią Ox kąt o mierze 120^{\circ}.

Podaj najmniejsze możliwe n.

Dane
a=-14
b=2
c=46
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe n.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  8 pkt ⋅ Numer: pp-30204 ⋅ Poprawnie: 0/31 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkty C=(5,9) i D=(0,-1) są dwoma kolejnymi wierzchołkami prostokąta ABCD, do boku AB którego należy punkt P=\left(\frac{15}{2},2\right). Wyznacz wierzchołek A=(x_a,y_a) tego prostokąta (odwrotnie do ruchu wskazówek zegara).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Przez punkt D i środek boku AB poprowadzono prostą o równaniu y=ax+b.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=7 oraz B=(7,-8) i C=(11,-6). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
» Punkty M=(-2,0) i N=(0,2) są punktami styczności okręgu z osiami układu współrzędnych. Prosta k, która jest wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej równiej -1.
Wyznacz równanie prostej k:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm