Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(5,2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},4\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty A=(0,0) i B=(20,21) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=5r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-3,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(-1,-2), B=(4,-2), C=(7,2) i D=(2,2) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-3)^2+(y)^2=2 B. (x-3)^2+(y)^2=4
C. (x+5)^2+(y+4)^2=2 D. (x+5)^2+(y+4)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. 1 \lessdot r \lessdot 2 B. r=1
C. r=2 D. r \lessdot 2
E. r > 2 F. 0 \lessdot r \lessdot 1
Zadanie 6.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(4,7) i B=\left(2,3\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20626 ⋅ Poprawnie: 6/14 [42%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta prostopadła do wektora [p,q] przechodzi przez punkt A=(x_A,y_A).

Wyznacz pole trójkąta ograniczonego przez tę prostą i osie układu współrzednych.

Dane
x_A=4
y_A=2
u_1=1
u_2=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20389 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Cięciwa okręgu o środku S=(4,7) wyznaczona przez prostą o równaniu 3x-4y-59=0 ma długość 40. Wyznacz równanie tego okręgu.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Podstawy AB i CD trapezu równoramiennego są prostopadłe do prostej k:\frac{1}{2}x+y+\frac{1}{2}=0, do której należy wierzchołek D tego trapezu. Wiedząc, że B=(2,6) i C=(-3,6) wyznacz współrzędne pozostałych wierzchołków A=(x_A,y_A) i D=(x_D,y_D).

Podaj najmniejsze możliwe y_A.

Odpowiedź:
y_{A_{min}}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty B=(0,5) i C=(0,-3) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-6=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30290 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Punkt S=(-2,5) jest środkiem okręgu o promieniu długości \sqrt{5}, a proste x-2y+c_1=0 i x+y+c_2=0 są styczne do tego okręgu.

Podaj najmniejsze możliwe c_2.

Odpowiedź:
{c_2}_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe c_1.
Odpowiedź:
{c_1}_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm