Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(1,1), do którego należy punkt o współrzędnych A=(6,-6) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+7 i x-y=-2.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkty A=(7,2) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(1,9) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(9,1), B=(14,1), C=(17,5) i D=(12,5) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-13)^2+(y-3)^2=4 B. (x-5)^2+(y+1)^2=4
C. (x-13)^2+(y-3)^2=2 D. (x-5)^2+(y+1)^2=2
Zadanie 5.  1 pkt ⋅ Numer: pr-10214 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okręgi x^2-4x+y^2-2y+1=0 i (x-5)^2+(y+1)^2=1:
Odpowiedzi:
A. mają dokładnie dwa punkty wspólne B. są rozłączne
C. są styczne wewnętrznie D. są styczne zewnętrznie
Zadanie 6.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(1,2), B=(5,4) i C=(2,8). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Prosta 8x-6y+48=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=44.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20415 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W romb ABCD, w którym |\sphericalangle BCD|=60^{\circ}, wpisano okrąg o równaniu x^2-12x+y^2+2y+34=0.

Wyznacz P_{ABCD}.

Odpowiedź:
P_{ABCD}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  4 pkt ⋅ Numer: pr-30260 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Punkt S=\left(\frac{22}{3},-\frac{1}{3}\right) jest środkiem ciężkości trójkąta ABC, w którym A=(1,-2) oraz \overrightarrow{AB}=[7,0]. Wyznacz środek D=(x_D,y_D) boku BC.

Podaj x_D.

Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (1 pkt)
 Wyznacz równanie boku BC: y=ax+b.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.4 (1 pkt)
 Podaj miarę stopniową kąta rozwartego tego trójkąta.
Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W trójkącie ABC punkty A=(0,1) i B=(10,1) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y+3=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c), gdzie x_c\leqslant 0 i y_c\leqslant 0, są wierzchołkami trójkąta równoramiennego o podstawie AB, opisanego na okręgu o równaniu x^2+(y-b)^2=10.

Podaj x_b.

Dane
x_a=7
y_a=2
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm