Punkt A=(8,10) jest środkiem okręgu o promieniu
2024. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0
Punkty A=(3,5), B=(9,7),
C=(-1,13) i D=(-4,12) są
kolejnymi wierzchołkami trapezu o podstawach AB i
CD. Ramiona tego trapezu przedłużono do punktu ich
przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg
o środku w punkcie O, do którego podstawa
AB tego trapezu jest styczną w punkcie E=(x_e,y_e).
Podaj x_o.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pp-30238 ⋅ Poprawnie: 0/5 [0%]
Dane są proste k:x+y+5=0,
l:7x-y-37=0 oraz punkt
P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej
k i do prostej l w punkcie
P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów,
którego środek ma mniejszą odciętą.
Podaj a+b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat