Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-5,-5) i B=(-4,-4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(1,5) i B=(-2,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość prostych równoległych y=-\frac{3}{4}x-\frac{117}{4} i -3x-4y+103=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta o równaniu x-y-11=0 oraz okrąg określony równaniem (x-5)^2+y^2+8y+14=0. Wówczas:
Odpowiedzi:
A. prosta przecina okrąg w dwóch punktach B. prosta jest styczną do okręgu
C. środek okręgu należy do prostej D. prosta i okrąg są rozłączne
Zadanie 6.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-40=0 i x+2y+4=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{16}{3},-\frac{13}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(5,12) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(0,0), B=(-1,7) i C=(-4,8) należą do okręgu o, zaś punkt D do prostej 2x-y+21=0 i okręgu o.
Wyznacz D=(x_D,y_D).

Podaj najmniejsze możliwe x_D.

Odpowiedź:
x_{D_{min}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_D.
Odpowiedź:
y_{D_{max}}= (wpisz liczbę całkowitą)
Zadanie 9.  8 pkt ⋅ Numer: pp-30204 ⋅ Poprawnie: 0/31 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkty C=(0,8) i D=(-5,-2) są dwoma kolejnymi wierzchołkami prostokąta ABCD, do boku AB którego należy punkt P=\left(\frac{5}{2},1\right). Wyznacz wierzchołek A=(x_a,y_a) tego prostokąta (odwrotnie do ruchu wskazówek zegara).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Przez punkt D i środek boku AB poprowadzono prostą o równaniu y=ax+b.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=5
y_a=1
x_b=11
y_b=3
a=2
b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30312 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dane sa okręgi o_1:x^2+y^2+a_1x+b_1y+c_1=0 oraz o_2:x^2+y^2+a_2x+b_2y+c_2=0. Wiadomo, że J^{k}_{S}(o_1)=o_2. Wyznacz środek S=(x_s,y_s) i skalę k tej jednokładności.

Podaj ujemną skalę k.

Dane
a_1=-10
b_1=18
c_1=81
a_2=-58
b_2=36
c_2=765
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj x_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj y_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj x_s wyznaczone dla skali ujemnej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm