Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(2,1) i L=(4,-4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(2,1) i B=(4,-4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych K=(3,1) oraz L=(7,-6) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-4,-3) i Q=\left(\frac{16}{5},-\frac{7}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10200 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta o równaniu y=\frac{3}{4}x+b-\frac{5}{4} jest styczną do okręgu opisanego wzorem (x+4)^2+(y-3)^2=25. Wyznacz możliwe wartości parametru b.

Podaj najmniejszą i największą możliwą wartość parametru b.

Odpowiedzi:
b_{min}= (wpisz liczbę zapisaną dziesiętnie)
b_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(3,1) i B=(6,-5).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20365 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{-12-4\sqrt{3}}{3}=-6.3094010767585031
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{-3+4\sqrt{3}}{3}=1.3094010767585031
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20390 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta y=mx+n jest styczną do okręgu x^2+y^2+ax+by+c=0 w punkcie A=(x_a,y_a).

Podaj m.

Dane
x_a=2
y_a=5
a=-12
b=-4
c=15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj n.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30199 ⋅ Poprawnie: 1/8 [12%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=\left(2,-\frac{7}{2}\right) i B=\left(6,-\frac{3}{2}\right) są kolejnymi wierzchołkami kwadratu ABCD, którego wierzchołki oznaczono przeciwnie do ruchu wskazówek zegara. Przekątna AC tego kwadratu opisana jest równaniem AC:6x+by+c=0. Wyznacz D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przez punkt (28,7) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 392 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30315 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Dany jest trójkąt o wierzchołkach A=(-3,6), B=(-2,0) i C=(-5,7). Trójkąt A_1B_1C_1 jest obrazem trójkąta ABC w jednokładności o środku S=(-2,4) i skali k=-3. Wyznacz współrzędne wszystkich wierzchołków trójkąta A_1B_1C_1.

Podaj sumę odciętych wszystkich wierzchołków trójkąta A_1B_1C_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj sumę rzędnych wszystkich wierzchołków trójkąta A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm