Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(-3,5) i C=\left(-5,-\frac{1}{2}\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-4,8) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(47,-52) i B=(-26,21) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10197 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem odcinka AB w jednokładności o skali k=-\frac{5}{2} jest odcinek o końcach A'=(11,3) i B'=(-5,-9).

Oblicz |AB|.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-42x+y^2-34y+729=0 B. x^2-40x+y^2-34y+645=0
C. x^2-42x+y^2-32y+695=0 D. x^2-40x+y^2-32y+655=0
Zadanie 6.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+9)y+2m+17=0 przecina prostą (2m+9)x+y-m-\frac{11}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(2,-4), a środkiem okręgu wpisanego w ten trójkąt punkt S=(14,1).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20408 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Odcinki AB i CD o końcach A=(x_a,y_a), B=(x_b,y_b), C=(x_c,y_c) i D=(x_d,y_d) są jednokładne w jednokładności J. Wyznacz środek i skalę tej jednokładności.

Podaj największą możliwą skalę jednokładności J.

Dane
x_a=-7
y_a=4
x_b=-5
y_b=8
x_c=-1
y_c=2
x_d=2
y_d=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem tej jednokładności w skali ujemnej.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30212 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane są kolejne wierzchołki trapezu A=(-7,4), B=(1,10), C=(-5,13) i D=(-9,10). Bok CD tego trapezu zawiera sie w prostej 3x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wysokość tego trapezu opuszczona z wierzchołka D zawiera się w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(-9,6), B=(3,10) i C=(-3,14) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30286 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
« W trójkącie równoramiennym ABC mamy: |AB|=|AC| oraz A=(-4,7) (odwrotnie do ruch u wskazówek zegara). Pole powierzchni tego trójkąta jest równe 24, a bok BC zawiera się w prostej x-y+5=0. Wyznacz współrzędne pozostałych wierzchołków (x,y) tego trójkąta.

Podaj najmniejsze możliwe x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm