Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-6,-3) i B=(-5,-1) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(-11,-14) jest środkiem okręgu o promieniu 2019. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (3,-3) od prostej o równaniu 2x-y-5=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (7,0) i (0,-7).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-2,5) i B=\left(-5,14\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  4 pkt ⋅ Numer: pr-20362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Punkty A=(-3,-5) i B=(1,-7) są kolejnymi wierzchołkami czworokąta ABCD (odwrotnie do ruchu wskazówek zegara) wpisanego w okrąg, którego osią symetrii jest prosta x-y-2=0.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c+y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-3,6), B=(4,-1) i C=(5,2) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30264 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC dane są: wierzchołki A=(-5,-1) i B=(-2,3), równanie boku BC:x+2y-4=0 i równanie środkowej AD:5x-y+24=0. Wysokość tego trójkąta CE opisana jest równaniem y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przez punkt (24,6) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 288 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Dane są proste k:x+y+5=0, l:7x-y-37=0 oraz punkt P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej k i do prostej l w punkcie P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów, którego środek ma mniejszą odciętą.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm