W trapezie ABCD dane są wierzchołki: A=(-10,-3),
B=(-6,-1) i C=(-9,3). Kąty przy
wierzchołkach A i D=(x_d,y_d) są proste.
Prosta zawierająca podstawę CD tego trapezu ma równanie
BD:y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%]
« Prosta k przechodzi przez punkty
A=(2,-1)
i B=(8,-3). Punkt D=(0,2)
jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością
trójkąta ABC opuszczoną z punktu C,
która przecina prostą k w punkcie E=(x_e,y_e).
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30317 ⋅ Poprawnie: 0/0
Obrazem odcinka AB w jednokładności o środku
S=(x_s,y_s) i skali k jest
odcinek A_1B_1 taki, że spełnione są warunki:
A=(-6,4), B_1=(-1,4),
\overrightarrow{SA_1}=[3,9] i
\overrightarrow{SB}=[2,1].
Podaj k.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj x_s+y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat