Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(1,0) i L=(5,1) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(2,-5) i promieniu długości 4\sqrt{2} należy punkt:
Odpowiedzi:
A. (1,2) B. (-1,3)
C. (-2,-1) D. (2,-5)
E. (2,-1) F. (-6,3)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (6,-2) i (8,-2) należy do prostej o równaniu y+ax=2+5a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (6,3) od prostej o równaniu 2x-y-5=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10220 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-11)^2+(y+1)^2=5 styczna jest prosta określona równaniem 2x+y+m-20=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(12,3) i B=(14,5) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(6,\frac{3}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20368 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Proste x+y-1=0 i x-\sqrt{3}y=0 przecinają się pod kątem ostrym \alpha.

Podaj \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Punkty A=(8,6) i B=(-4,-10) należą do okręgu, którego środek należy do prostej y=x-4.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dany jest punkt A=(-17,12) oraz prosta k o równaniu y=3x-1, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(3,1), B=(8,7) i C=(6,10) są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta, która przecięła bok AC w punkcie D=(x_d,y_d). Wysokość ta opisana jest wzorem BD:y=ax+b

Wyznacz b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa do boku AB trójkąta.

Podaj b_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30317 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Obrazem odcinka AB w jednokładności o środku S=(x_s,y_s) i skali k jest odcinek A_1B_1 taki, że spełnione są warunki: A=(-6,4), B_1=(-1,4), \overrightarrow{SA_1}=[3,9] i \overrightarrow{SB}=[2,1].

Podaj k.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj x_s+y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm