Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-5,7) i C=(7,12) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-2,-4) i B=(-6,-6).

Zatem liczba m jest równa:

Odpowiedzi:
A. -4 B. -2
C. 2 D. 4
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (3,-5) i (5,-5) należy do prostej o równaniu y+ax=-1+2a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(5,-3), B=(10,-3), C=(13,1) i D=(8,1) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-1)^2+(y+5)^2=4 B. (x-1)^2+(y+5)^2=2
C. (x-9)^2+(y+1)^2=2 D. (x-9)^2+(y+1)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10200 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta o równaniu y=\frac{3}{4}x+b-\frac{7}{2} jest styczną do okręgu opisanego wzorem (x+5)^2+(y)^2=25. Wyznacz możliwe wartości parametru b.

Podaj najmniejszą i największą możliwą wartość parametru b.

Odpowiedzi:
b_{min}= (wpisz liczbę zapisaną dziesiętnie)
b_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(2,-3).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20628 ⋅ Poprawnie: 5/19 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=2
y_a=0
x_b=6
y_b=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20387 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do okręgu o równaniu (x-1)^2+(y+3)^2=10 należą punkty M=(2,-6) oraz N=(4,-4). Punkt P tego okręgu spełnia warunek |MP|=|NP|. Wyznacz współrzędne punktu P.

Podaj najmniejszą z odciętych wszystkich znalezionych punktów P.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą z rzędnych wszystkich znalezionych punktów P.
Odpowiedź:
y_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(-3,1), B=(5,-7) i C=(9,-1) są wierzchołkami trójkata.

Wyznacz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz równanie y=ax+b prostej AD.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (1 pkt)
 Wyznacz współrzędne (x_s,y_s) środka ciężkości trójkąta ABC

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Podpunkt 9.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
y_s=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=-3 oraz B=(-3,-13) i C=(1,-11). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  5 pkt ⋅ Numer: pr-30797 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 (2 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są trzema kolejnymi wierzchołkami prostokąta ABCD (kolejność wierzchołków jest zgodna z kierunkiem odwrotnym do ruchu wskazówek zegara).

Podaj odciętą wierzchołka D tego prostokąta.

Dane
x_A=-4
y_A=-4
x_B=-1
y_B=-1
x_C=-6
y_C=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 (1 pkt) Podaj rzedną wierzchołka D tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 (1 pkt) Oblicz pole powierzchni tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 (1 pkt) Oblicz promień okręgu opisanego na tym prostokącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.5 (1 pkt)
 (1 pkt) Oblicz sinus kąta pod jakim przecinają się przekątne tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm