Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(2,4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},6\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty A=(-7,-6) i B=(17,26) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=5r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(34,51) i B=(59,-24) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(6,4), B=(11,4), C=(14,8) i D=(9,8) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-2)^2+(y-2)^2=2 B. (x-10)^2+(y-6)^2=2
C. (x-2)^2+(y-2)^2=4 D. (x-10)^2+(y-6)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x-5)^2+(y-9)^2=3 z prostą określoną wzorem y=5+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20615 ⋅ Poprawnie: 3/11 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy wierzchołki równoległoboku ABCD mają współrzędne A=\left(\frac{11}{2},0\right), B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara). Bok BC tego równoległoboku zawarty jest w prostej o równaniu y=-x+\frac{25}{2}, zaś bok CD w prostej o równaniu y=3x+5.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-5
y_a=2
x_b=1
y_b=0
x_c=-3
y_c=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20389 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Cięciwa okręgu o środku S=(10,6) wyznaczona przez prostą o równaniu 3x-4y-81=0 ma długość 40. Wyznacz równanie tego okręgu.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30207 ⋅ Poprawnie: 0/21 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na prostej o równaniu x-3y+14=0 leży wierzchołek D rombu ABCD, w którym A=(-6,17) i przekątne przecinają się w punkcie S=(2,4). Prosta o równaniu 4x+by+c=0 zawiera przekątną BD tego rombu. Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara) tego rombu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt A=(10,11) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y-2=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y-1=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30273 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
Poprowadzono styczne do paraboli y=\frac{1}{4}x^2+3 przechodzące przez początek układu współrzędnych. Oblicz miarę stopniową kąta ostrego między tymi stycznymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm