Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(6,-3) i F=(4,-5) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Punkt A=(14,-7) jest środkiem okręgu o promieniu
2023. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-a+5)^2+(y+m-a-b)^2=16 i
(x-2m+a)^2+(y+m-a-b)^2=9 przecinają się w dwóch
różnych punktach.
Rozwiazanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych
wszystkich końców tych przedziałów, które są liczbami.
Dane
a=6 b=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Podaj długość rozwiązania, czyli łączną długość tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat