Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(5,-1) i F=(-3,-4) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(5,-1) i B=(-3,-4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{2}{3}=0 i -3y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ} B. są równoległe
C. przecinają się pod kątem 60^{\circ} D. przecinają się pod kątem 45^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-8x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. prostą B. zbiór pusty
C. punkt D. okrąg
E. dwie proste prostopadłe F. dwie proste przecinające się pod kątem innym niż prosty
Zadanie 5.  1 pkt ⋅ Numer: pr-10211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole kwadratu wpisanego w okrąg o równaniu x^2+y^2-10x+2y=-1.
Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(2,-4), B=(9,0) i C=(3,4).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
» Środek okręgu S=(x_s,y_s) stycznego do obu osi układu należy do ćwiartki drugiej układu współrzędnych. Okrąg ten przechodzi przez punkt P=(-8,1).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe x_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-30265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Prosta x+2y+6=0 jest osią symetrii trapezu równoramiennego ABCD o ramieniu AD, przy czym A=\left(-1,-\frac{15}{2}\right) i D=\left(-4,-\frac{7}{2}\right). Wyznacz B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_B.
Odpowiedź:
y_B= (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz C=(x_C,y_C).

Podaj x_C+y_C.

Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Przez punkt (36,9) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 648 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30317 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Obrazem odcinka AB w jednokładności o środku S=(x_s,y_s) i skali k jest odcinek A_1B_1 taki, że spełnione są warunki: A=(-6,4), B_1=(-1,4), \overrightarrow{SA_1}=[3,9] i \overrightarrow{SB}=[2,1].

Podaj k.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj x_s+y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm