Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-1,-4) i B=(2,3) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych K=(-9,-3) oraz L=(-10,-9) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-8,-9) i Q=\left(-\frac{4}{5},-\frac{37}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y+1=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x+3)^2+(y+6)^2=9 B. (x+3)^2+(y+5)^2=3
C. (x+3)^2+(y+6)^2=3 D. (x+2)^2+(y+5)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20608 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkty A=(-9,-3) i C=(-3,1) są przeciwległymi wierzchołkami kwadratu ABCD. Prosta 3x+by+c=0 zawiera przekątną BD tego kwadratu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Prosta x+b_1y+c_1=0 zawiera bok CD tego kwadratu (odwrotnie do ruchu wskazówek zegara).

Podaj c_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(2, 1) jest punktem przecięcia przekątnych, a punkt A=(1,-6) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20391 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Wyznacz miarę kąta między stycznymi do okręgu x^2+y^2+8x-2y+12=0 poprowadzonymi przez punkt A=(-1,0).

Podaj miarę stopniową tego kąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30193 ⋅ Poprawnie: 28/61 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ABC ma wierzchołki: A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c).

Wyznacz długość najkrótszej wysokości tego trójkąta.

Dane
x_a=-3
y_a=0
x_b=-3
y_b=-1
x_c=1
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Wyznacz długość najdłuższej wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30236 ⋅ Poprawnie: 5/14 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Proste o równaniach x-y-4=0, x+y-8=0 oraz x-7y-64=0 tworzą trójkąt.

Oblicz długość najkrótszego boku tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Oblicz długość najdłuższego boku tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30295 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Prosta a_1x+b_1y+c_1=0 przecina okrąg x^2+y^2+ax+by+c=0 w punktach A i B. Wyznacz równanie a_2x+y+c_2=0 symetralnej odcinka AB.

Podaj a_2.

Dane
a_1=1
b_1=-2
c_1=-3
a=-4
b=6
c=-12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Wyznacz taki punkt P=(x_p,y_p) należący do symetralnej odcinka AB, że \triangle ABP jest prostokątny.

Podaj najmniejsze możliwe x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj największe możliwe y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm