Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(1,-5) i promieniu długości \sqrt{89} należy punkt:
Odpowiedzi:
A. (-5,4) B. (-6,4)
C. (-6,1) D. (-7,7)
E. (-4,3) F. (0,5)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{5}{4}=0 i -5y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 45^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x^2+14x=y^2-49 opisuje na płaszczyźnie
Odpowiedzi:
A. parabolę B. dwie proste
C. okrąg D. punkt
E. zbiór pusty F. prostą
Zadanie 5.  1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta określona wzorem y=m jest styczną do okręgu o równaniu (x-2)^2+(y-1)^2=169

Podaj najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20603 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b) oraz punkt K\in AB taki, że |AK|=\frac{1}{4}|AB|. Wyznacz współrzędne punktu K=(x_k,y_k).

Podaj x_k.

Dane
x_a=4
y_a=4
x_b=12
y_b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dane są punkty A=(4,3) i B=\left(\frac{17}{2},\frac{5}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20409 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Obrazem prostej y=ax+b w jednokładności J^k_{S=(x_s,y_s)} jest prosta y=a_1x+b_1.

Podaj a_1.

Dane
a=2
b=-6
x_s=2
y_s=1
k=-\frac{1}{3}=-0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem tej jednokładności w skali ujemnej.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz D=(x_d,y_d).

Podaj x_d.

Dane
x_a=-3
y_a=5
x_b=5
y_b=-1
x_c=11
y_c=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(-5,2), B=(7,6) i C=(1,10) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30316 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Obrazem okręgu (x+7)^2+(y-2)^2=1 w jednokładności o środku S=(x_s,y_s) jest okrąg (x+1)^2+(y-5)^2=9.

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm