Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(4,-1), do którego należy punkt o współrzędnych A=(-1,1) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-6,9) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(-38,-27) i B=(-10,29) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. \overrightarrow{AB}=3\overrightarrow{A'B'} B. \overrightarrow{BB'}=4\overrightarrow{BS}
C. |AA'|=3|SA| D. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y+68=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x+8)^2+(y-7)^2=3 B. (x+7)^2+(y-8)^2=9
C. (x+8)^2+(y-8)^2=3 D. (x+8)^2+(y-7)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20608 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkty A=(-12,5) i C=(-6,9) są przeciwległymi wierzchołkami kwadratu ABCD. Prosta 3x+by+c=0 zawiera przekątną BD tego kwadratu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Prosta x+b_1y+c_1=0 zawiera bok CD tego kwadratu (odwrotnie do ruchu wskazówek zegara).

Podaj c_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Prosta 11x-2y+22=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=\frac{187}{4}.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20371 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta 3x-4y+c_1=0 zawiera bok CD kwadratu ABCD (odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu C jest mniejsza od odciętej punktu D) o polu powierzchni P_{\Box ABCD}=4. Wyznacz równanie prostej AB:x+b_2y+c_2=0

Podaj b_2.

Dane
c_1=51
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Punkty K=(0,4) oraz L są środkami boków odpowiednio AC i BC trójkata ABC. Wiadomo, że \overrightarrow{AK}=[1,6] oraz \overrightarrow{KL}=[8,4]. Wyznacz równanie boku AB tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty B=(-1,11) i C=(-1,3) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y+7=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30316 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Obrazem okręgu (x+7)^2+(y-2)^2=1 w jednokładności o środku S=(x_s,y_s) jest okrąg (x+1)^2+(y-5)^2=9.

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm