Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(5,-2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},-5\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-2,3) i B=(4,4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(-5,3) i B=\left(-\frac{3}{2},3\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(7,-4), B=(12,-4), C=(15,0) i D=(10,0) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-11)^2+(y+2)^2=2 B. (x-11)^2+(y+2)^2=4
C. (x-3)^2+(y+6)^2=4 D. (x-3)^2+(y+6)^2=2
Zadanie 5.  1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta określona wzorem y=m jest styczną do okręgu o równaniu (x-3)^2+(y+2)^2=121

Podaj najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-2,6) i B=(-1,7) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(6, 2) jest punktem przecięcia przekątnych, a punkt A=(5,-5) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Środki wszystkich okręgów o równaniu x^2-(m-2)x+y^2+m-3=0 należą do prostej k.

Jaki kąt tworzy prosta k z osią Ox.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz tę wartość parametru m, dla której okrąg ten jest styczny do prostej 4-x=0.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30185 ⋅ Poprawnie: 12/92 [13%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz równania prostych, które przechodzą przez punkt A=(0,7) i są równo oddalone od punktów B=(-3,4) oraz C=(1,2). Wyznaczone równania zapisz w postaci kierunkowej y=ax+b.

Podaj współczynnik a tej prostej, która ma oba współczynniki całkowite.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj współczynnik b tej prostej, która ma oba współczynniki całkowite.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.3 (2 pkt)
 Podaj współczynnik b tej prostej, która nie ma obu współczynników całkowitych.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=6
y_a=-8
x_b=15
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30296 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
Okrąg o:(x-a)^2+(y-b)^2=\left(1\frac{2}{5}\right)^2 przechodzi przez punkty wspólne okręgów x^2-4x+y^2-2y+4=0 i x^2-4x+y^2+8y-1=0.

Podaj najmniejsze możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm