«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y+\frac{1}{2}=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(2,6) i C=(-3,6) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%]
Punkty B=(0,5) i C=(0,-3)
są dwoma wierzchołkami trójkąta prostokątnego ABC
o kącie prostym przy wierzchołku A. Przyprostokątna
AC zawiera się w prostej
x-2y-6=0. Oblicz współrzędne punktu
A=(x_a,y_a).
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Prosta y=ax+b zawiera środkową AD
tego trójkąta.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30290 ⋅ Poprawnie: 0/0