Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(5,-1) i F=(-3,-4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
« Prosta x+2y+6=0 jest osią symetrii trapezu
równoramiennego ABCD o ramieniu
AD, przy czym A=\left(-1,-\frac{15}{2}\right)
i D=\left(-4,-\frac{7}{2}\right).
Wyznacz B=(x_B,y_B).
Podaj x_B.
Odpowiedź:
x_B=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj y_B.
Odpowiedź:
y_B=(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Wyznacz C=(x_C,y_C).
Podaj x_C+y_C.
Odpowiedź:
x_C+y_C=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%]
Przez punkt (36,9) poprowadzono prostą, która wraz
z osiami układu tworzy trójkąt o polu powierzchni 648
i kąt rozwarty z dodatnią półosią osi Ox.
Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30317 ⋅ Poprawnie: 0/0
Obrazem odcinka AB w jednokładności o środku
S=(x_s,y_s) i skali k jest
odcinek A_1B_1 taki, że spełnione są warunki:
A=(-6,4), B_1=(-1,4),
\overrightarrow{SA_1}=[3,9] i
\overrightarrow{SB}=[2,1].
Podaj k.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj x_s+y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat