Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(6,3) i C=(-1,1). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{53}}{2}\pi B. \sqrt{53}\pi
C. 2\sqrt{53}\pi D. \sqrt{106}\pi
E. \frac{\sqrt{53}}{2}\pi F. \frac{\sqrt{53}}{4}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(5,3) i promieniu długości 2\sqrt{10} należy punkt:
Odpowiedzi:
A. (-3,-3) B. (-1,4)
C. (-5,2) D. (-1,1)
E. (-4,0) F. (2,-2)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(15,15) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (7,3) od prostej o równaniu 2x-y-7=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y+10=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x-7)^2+(y-4)^2=9 B. (x-6)^2+(y-4)^2=3
C. (x-6)^2+(y-3)^2=3 D. (x-6)^2+(y-3)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta y-7=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(8,-3) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(7,6), B=(15,8) i C=(2,17), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20409 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Obrazem prostej y=ax+b w jednokładności J^k_{S=(x_s,y_s)} jest prosta y=a_1x+b_1.

Podaj a_1.

Dane
a=2
b=-14
x_s=6
y_s=1
k=-\frac{1}{3}=-0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem tej jednokładności w skali ujemnej.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(1,4), B=(9,-4) i C=(13,2) są wierzchołkami trójkata.

Wyznacz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz równanie y=ax+b prostej AD.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (1 pkt)
 Wyznacz współrzędne (x_s,y_s) środka ciężkości trójkąta ABC

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Podpunkt 9.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
y_s=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30220 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(4,-5) i B=(9,2) tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie x-2y-5=0. Wyznacz współrzędne wierzchołka C=(x_c, y_c) tego trójkąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz równanie boku AC:ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30298 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
« Styczne do okręgu x^2+y^2+2x-6y=10 są nachylone do osi Ox pod takim kątem \alpha, że 2\cos\alpha+\sin\alpha=0. Wyznacz równania tych stycznych.

Zapisz równania stycznych w postaci kierunkowej y=mx+b_1 i y=mx+b_2. Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj większa z liczb b_1 i b_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm