Prosta y=2x-4 zawiera bok
CD kwadratu ABCD o
wierzchołku A=\left(-\frac{13}{4},-5\right). Wierzchołki tego kwadratu
oznaczone są przeciwnie do ruchu wskazówek zegara.
Wyznacz B=(x_b,y_b) oraz C=(x_c,y_c).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%]
W układzie współrzędnych punkty A=(x_a,y_a) i
B=(x_b,y_b) są wierzchołkami trójkąta
ABC. Wierzchołek C
tego trójkąta leży na prostej o równaniu y=ax+b.
Oblicz współrzędne punktu C=(x_c,y_c), dla którego
kąt ABC jest prosty.
Podaj najmniejsze możliwe x_c.
Dane
x_a=7 y_a=1 x_b=13 y_b=3 a=2 b=-5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pr-30300 ⋅ Poprawnie: 0/0
« Prosta a_1x+b_1y+c_1=0 przecina okrąg
x^2+y^2+ax+by+c=0 w punktach
A i B.
Przez punkty A i B
poprowadzono dwie styczne do tego okręgu, które przecięły się w punkcie
C. Wyznacz środek okręgu
S=(x_s,y_s) opisanego na trójkącie
ABC.
Podaj x_s.
Dane
a_1=1 b_1=-2 c_1=1 a=-4 b=-6 c=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Wyznacz długość promienia okręgu opisanego na trójkącie
ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat