Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-1,0) i L=(-2,3) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{25}{4},-2\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(6,1).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu 6x-3y+9=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(0,2), B=(5,2), C=(8,6) i D=(3,6) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x+4)^2+(y)^2=4 B. (x-4)^2+(y-4)^2=2
C. (x+4)^2+(y)^2=2 D. (x-4)^2+(y-4)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-40x+y^2-32y+655=0 B. x^2-42x+y^2-32y+695=0
C. x^2-42x+y^2-34y+729=0 D. x^2-40x+y^2-34y+645=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20603 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b) oraz punkt K\in AB taki, że |AK|=\frac{1}{4}|AB|. Wyznacz współrzędne punktu K=(x_k,y_k).

Podaj x_k.

Dane
x_a=0
y_a=5
x_b=8
y_b=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Punkty A=(-3,-5) i B=(1,-7) są kolejnymi wierzchołkami czworokąta ABCD (odwrotnie do ruchu wskazówek zegara) wpisanego w okrąg, którego osią symetrii jest prosta x-y-2=0.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c+y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Punkty A=(9,0) i B=(-3,-16) należą do okręgu, którego środek należy do prostej y=x-11.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pp-30205 ⋅ Poprawnie: 0/16 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(-1,1) i D=(-3,5) są wierzchołkami rombu (odwrotnie do ruchu wskazówek zegara), którego przekątna AC zawiera się w prostej o równaniu y=2x+3.

Przekątna BC tego rombu opisana jest równaniem BC:y=ax+b. Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Punkt S=(x_s,y_s) jest punktem przecięcia przekątnych tego rombu.

Podaj y_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz współrzędne wierzchołeka B=(x_b,y_b) tego rombu.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta k przechodzi przez punkty B=(-5,2) i P=(5,14). Prosta l:2x+y-10=0 przecina prostą k w punkcie A=(x_a,y_a) i prostą o równaniu y=2 w punkcie C=(x_c,2).

Oblicz x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30292 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wykres funkcji f(x)=-|x+1|-4 przecina okrąg x^2+y^2-4x+8y+11=0 w punktach A i B.

Podaj długość cięciwy AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj odległość środka okręgu od cięciwy AB.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm