Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-2,-2), do którego należy punkt o współrzędnych A=(-4,4) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-2,4) i B=(5,7) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-1,5) i B=(2,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(2,2), B=(7,2), C=(10,6) i D=(5,6) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-6)^2+(y-4)^2=2 B. (x+2)^2+(y)^2=4
C. (x-6)^2+(y-4)^2=4 D. (x+2)^2+(y)^2=2
Zadanie 5.  1 pkt ⋅ Numer: pr-10204 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-2,-2) jest środkiem okręgu, do którego należy punkt P=(-2,-5). Okrąg ten ma równanie x^2+y^2+ax+by+c=0.

Podaj wartości parametrów a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20599 ⋅ Poprawnie: 32/163 [19%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=\sqrt{7}. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=-2
y_a=3
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta y=ax+b jest osią symetrii trójkąta o wierzchołkach A=(-4,0), B=(0,-4) i C=(2,2).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20413 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Okrąg o równaniu o_1:x^2+y^2-18x+4y+49=0 przekształcono przez jednokładność o środku S i skali k, w wyniku czego otrzymano okrąg o równaniu o_2:(x-1)^2+(y-2)^2=4. Oblicz k i wyznacz współrzędne punktu S=(x_S, y_S).

Podaj k.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj x_S+y_S.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30212 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane są kolejne wierzchołki trapezu A=(-4,0), B=(4,6), C=(-2,9) i D=(-6,6). Bok CD tego trapezu zawiera sie w prostej 3x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wysokość tego trapezu opuszczona z wierzchołka D zawiera się w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta k przechodzi przez punkty B=(-4,2) i P=(6,14). Prosta l:2x+y-12=0 przecina prostą k w punkcie A=(x_a,y_a) i prostą o równaniu y=2 w punkcie C=(x_c,2).

Oblicz x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30270 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
« Punkty A=(-4,-2) i C=(0,0) są wierzchołkami rombu o kącie ostrym 60^{\circ} przy wierzchołku B. Wyznacz B=(x_B,y_B) i D=(x_D,y_D) (odwrotnie do wskazówek zegara).

Podaj x_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj y_B.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm