Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-2,-1) i F=(-4,3) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-2,-1) i B=(-4,3) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu -2x-3y-3=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-7,1) od prostej o równaniu 2x-y+10=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta o równaniu x-y-5=0 oraz okrąg określony równaniem (x)^2+y^2+6y+7=0. Wówczas:
Odpowiedzi:
A. prosta przecina okrąg w dwóch punktach B. prosta i okrąg są rozłączne
C. prosta jest styczną do okręgu D. środek okręgu należy do prostej
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-8 oraz m+x+2y-9=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(1,-6) i C=(-3,1).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-20376 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Prosta x-2y+6=0 zawiera jeden z boków rombu ABCD, a wierzchołek A ma współrzędne A=(-2,2). Przekątne tego rombu przecinają się w punkcie O=(1,6). Wierzchołek D ma współrzędne D=(x_D,y_D).

Podaj x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20387 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Do okręgu o równaniu (x-2)^2+(y+3)^2=10 należą punkty M=(3,-6) oraz N=(5,-4). Punkt P tego okręgu spełnia warunek |MP|=|NP|. Wyznacz współrzędne punktu P.

Podaj najmniejszą z odciętych wszystkich znalezionych punktów P.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich znalezionych punktów P.
Odpowiedź:
y_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wysokości trójkąta ABC o wierzchołkach A=(-6,-3) i B=(2,-7) przecinaja się w punkcie O=(1,-3). Wyznacz C=(x_C,y_C).

Podaj x_C.

Odpowiedź:
x_C= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj y_C.
Odpowiedź:
y_C= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30238 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane są punkty A=(3,-3), B=(-3,3) i C=(-6,-6), które są wierzchołkami trójkąta, a prosta o równaniu x+by+c=0 jest osią symetrii tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
» Punkty M=(-2,0) i N=(0,2) są punktami styczności okręgu z osiami układu współrzędnych. Prosta k, która jest wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej równiej -1.
Wyznacz równanie prostej k:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm