Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(2,4) i C=(3,-6). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{101}}{2}\pi B. 2\sqrt{101}\pi
C. \sqrt{101}\pi D. \frac{\sqrt{101}}{4}\pi
E. \frac{\sqrt{101}}{2}\pi F. \sqrt{202}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(7,-5) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(11,-9) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (0,-2) od prostej o równaniu 2x-y-7=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y-20=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x-5)^2+(y+5)^2=9 B. (x-4)^2+(y+6)^2=3
C. (x-4)^2+(y+5)^2=3 D. (x-4)^2+(y+6)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-4,8) i B=(-3,9) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(5,0), a środkiem okręgu wpisanego w ten trójkąt punkt S=(13,15).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20367 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta x+2y-\frac{8}{3}=0 zawiera przekątną AC kwadratu ABCD o obwodzie 16\sqrt{10} i wierzchołku B=\left(8,\frac{22}{3}\right).
Wyznacz A=(x_a,y_a) (odwrotnie do ruchu wskazówek zegara).

Podaj x_a+y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).

Podaj x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20404 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y+1-b)^2=8 i (x+1-a)^2+(y-m-a-b)^2=2 są styczne zewnętrznie.

Podaj najmniejsze możliwe m.

Dane
a=5
b=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30193 ⋅ Poprawnie: 28/61 [45%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójkąt ABC ma wierzchołki: A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c).

Wyznacz długość najkrótszej wysokości tego trójkąta.

Dane
x_a=2
y_a=0
x_b=2
y_b=-1
x_c=6
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Wyznacz długość najdłuższej wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Punkty A=(4,-1), B=(0,2) i C=(2,-2) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30291 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Punkt S=(-3,6) jest środkiem koła o promieniu długości \sqrt{10}, a proste 2x+y+1-6m=0 i x+y-3-3m=0 przecinają się w punkcie należącym do tego koła.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm