Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-6,-5) i F=(3,4) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-8,-8) i B=(4,6) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkty A=(-8,-8) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(4,6) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-11,-3) od prostej o równaniu 2x-y+14=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. 0 \lessdot r \lessdot 1 B. r=1
C. 1 \lessdot r \lessdot 2 D. r=2
E. r > 2 F. r \lessdot 2
Zadanie 6.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(-5-2\sqrt{3},7 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(-4,0), a środkiem okręgu wpisanego w ten trójkąt punkt S=(12,12).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-20370 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Odcinek o długości 4 zawarty jest w prostej o równaniu 3x-4y-22=0. Symetralna tego odcinka przecięła oś Oy w punkcie A=(0,2). Wyznacz współrzedne końców tego odcinka.

Podaj sumę odciętej i rzędnej tego punktu, który ma obie współrzędne całkowite.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj odciętą drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj rzędną drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20387 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Do okręgu o równaniu (x+4)^2+(y-5)^2=10 należą punkty M=(-3,2) oraz N=(-1,4). Punkt P tego okręgu spełnia warunek |MP|=|NP|. Wyznacz współrzędne punktu P.

Podaj najmniejszą z odciętych wszystkich znalezionych punktów P.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich znalezionych punktów P.
Odpowiedź:
y_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30198 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta y=2x zawiera bok CD kwadratu ABCD o wierzchołku A=\left(-\frac{13}{4},-1\right). Wierzchołki tego kwadratu oznaczone są przeciwnie do ruchu wskazówek zegara. Wyznacz B=(x_b,y_b) oraz C=(x_c,y_c).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Prosta x-2y-1=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(5,2) oraz C=(4,10). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30301 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Zbadaj wzajemne położenie prostej k_1:y=-x+1 i okręgu o_1:x^2+y^2-2x-2y+2+4a-m=0 w zależności od wartości parametru m.

Podaj największą liczbę m, dla której podane równanie nie opisuje okręgu.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj największą wartość m, dla której prosta k_1 jest styczną do okręgu o_1.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Przedział (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których prosta k_1 jest rozłączna z okręgiem o_1.

Podaj p+q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
 Podaj najmniejszą wartość całkowitą parametru m, dla której prosta k_1 przecina okrąg o_1 w dwóch różnych punktach.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm