Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(4,-2), do którego należy punkt o współrzędnych A=(-6,5) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(5,6) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=(-7,-1) jest środkiem okręgu, a odległość punktu A=(41,19) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-7,-4) od prostej o równaniu 2x-y+5=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10203 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W jednokładności o środku P=(0,-7) i skali k=-2 obrazem okręgu o równaniu x^2+6x+y^2+12y+29=0 jest okrąg: określony wzorem:
Odpowiedzi:
A. (x-9)^2+(y+2)^2=64 B. (x-9)^2+(y+1)^2=61
C. (x-9)^2+(y+2)^2=60 D. (x+9)^2+(y-2)^2=64
Zadanie 6.  2 pkt ⋅ Numer: pp-20603 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b) oraz punkt K\in AB taki, że |AK|=\frac{1}{4}|AB|. Wyznacz współrzędne punktu K=(x_k,y_k).

Podaj x_k.

Dane
x_a=0
y_a=-2
x_b=8
y_b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-6
y_A=-1
x_B=2
y_B=-9
x_C=3
y_C=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
x_a=-2
y_a=-5
x_b=0
y_b=-1
x_c=-4
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20393 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Punkty M=(0,2) i N=(2,0) są punktami styczności okręgu i osi układu współrzędnych, zaś prosta k: y=ax+b jest styczną do tego okręgu w punkcie o odciętej równej 1 i tworzy z osią Ox kąt \alpha\in(0^{\circ},90^{\circ}).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz D=(x_d,y_d).

Podaj x_d.

Dane
x_a=-7
y_a=-1
x_b=1
y_b=-7
x_c=7
y_c=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkt A=(11,11) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y-3=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y-4=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c), gdzie x_c\leqslant 0 i y_c\leqslant 0, są wierzchołkami trójkąta równoramiennego o podstawie AB, opisanego na okręgu o równaniu x^2+(y-b)^2=10.

Podaj x_b.

Dane
x_a=7
y_a=1
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm