Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(2,-1) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},-4\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m-9 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{2}{5}=0 i -3y+5=0:
Odpowiedzi:
A. są prostopadłe B. są równoległe
C. przecinają się pod kątem 60^{\circ} D. przecinają się pod kątem 30^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-9x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. dwie proste prostopadłe B. parabolę
C. okrąg D. zbiór pusty
E. prostą F. dwie proste przecinające się pod kątem innym niż prosty
Zadanie 5.  1 pkt ⋅ Numer: pr-10390 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Rozwiązaniem nierówności |x-a| > b jest zbiór (-\infty, 9)\cup(17,+\infty).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(3+\sqrt{6},-1+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Punkty A=(10,1), B=(1,-1), C=(-3,5), D=(4,10) i E=(9,8) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20375 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dla jakich wartości parametru m prosta y=2x+m jest odległa od prostej y=2x-5 o 2\sqrt{5}?

Podaj największe możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20392 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Prosta 21x-28y-164=0 jest styczną do okręgu o środku S=(3,-4).

Oblicz promień tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30202 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do boku CD prostokąta ABCD należy punkt M=\left(\frac{5}{3},\frac{13}{3}\right). Ponadto A=(12,5) i B=(-4,9) (odwrotnie do ruchu wskazówek zegara). Wyznacz równanie prostej CD:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Wyznacz wierzchołek C=(x_c,y_c) tego prostokąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30232 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Punkty A=(4,3), B=(15,5) i C=(5,10) są wierzchołkami trójkąta ABC. Prosta CD jest wysokością tego trójkąta, D=(x_d,y_d)\in AB. Prosta k:x+by+c=0 przechodzi przez punkt D i k\parallel BC.

Wyznacz x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30274 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Proste a_1x+b_1y+c_1=0 oraz a_2x+b_2y+c_2=0 tworzą kąt, którego dwusieczną jest prosta ax+y+c=0.

Podaj najmniejsze możliwe c.

Dane
a_1=4
b_1=2
c_1=-25
a_2=11
b_2=-2
c_2=-42
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm