Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(3,-6) i C=\left(-6,1\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(3,-5) i promieniu długości 10 należy punkt:
Odpowiedzi:
A. (-8,4) B. (-2,3)
C. (-5,1) D. (-2,-2)
E. (-7,-1) F. (-4,5)
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(5,-9).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Trójkąt równoboczny o wysokości h jest opisany na okręgu o równaniu x^2-8x+16+y^2+16y+\frac{255}{4}=0.

Podaj liczbę h.

Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. 1 \lessdot r \lessdot 2 B. r \lessdot 2
C. r=2 D. 0 \lessdot r \lessdot 1
E. r=1 F. r > 2
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(5,-9).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20626 ⋅ Poprawnie: 6/14 [42%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta prostopadła do wektora [p,q] przechodzi przez punkt A=(x_A,y_A).

Wyznacz pole trójkąta ograniczonego przez tę prostą i osie układu współrzednych.

Dane
x_A=9
y_A=9
u_1=4
u_2=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20371 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta 3x-4y+c_1=0 zawiera bok CD kwadratu ABCD (odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu C jest mniejsza od odciętej punktu D) o polu powierzchni P_{\Box ABCD}=4. Wyznacz równanie prostej AB:x+b_2y+c_2=0

Podaj b_2.

Dane
c_1=-10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20399 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Środkiem okręgu stycznego do osi Ox w punkcie (-1,0) i przechodzącego przez punkt A=(2,9), jest punkt S=(x_s,y_s).

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30185 ⋅ Poprawnie: 12/92 [13%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz równania prostych, które przechodzą przez punkt A=(7,1) i są równo oddalone od punktów B=(4,-2) oraz C=(8,-4). Wyznaczone równania zapisz w postaci kierunkowej y=ax+b.

Podaj współczynnik a tej prostej, która ma oba współczynniki całkowite.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj współczynnik b tej prostej, która ma oba współczynniki całkowite.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 Podaj współczynnik b tej prostej, która nie ma obu współczynników całkowitych.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30223 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste \sqrt{3}x+3y=-12+5\sqrt{3} i x=5 zawierają odpowiednio boki AC i BC trójkąta równobocznego ABC, w którym punkt P=\left(\frac{13}{2},\frac{-8-3\sqrt{3}}{2}\right) jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara). Wyznacz punkt B=(x_b, y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
» Punkty M=(-2,0) i N=(0,2) są punktami styczności okręgu z osiami układu współrzędnych. Prosta k, która jest wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej równiej -1.
Wyznacz równanie prostej k:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm