Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-4,6) i C=(1,1). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{5\sqrt{2}}{4}\pi B. \frac{5\sqrt{2}}{2}\pi
C. \frac{15\sqrt{2}}{2}\pi D. 5\sqrt{2}\pi
E. 10\pi F. 10\sqrt{2}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych A=\left(11,1\right) i B=\left(21,1\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (-2,3) i (0,3) należy do prostej o równaniu y+ax=7-3a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-11,4) i Q=\left(-\frac{19}{5},\frac{28}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10220 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-6)^2+(y-4)^2=5 styczna jest prosta określona równaniem 2x+y+m-15=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20630 ⋅ Poprawnie: 1/96 [1%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(0,-3) i B=(8,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{31}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20359 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przekątna AC rombu ABCD, w którym A=(x_a,y_a) i D=(x_d,y_d), zawarta jest w prostej ax+by+c=0. Wyznacz B=(x_b,y_b)

Podaj x_b.

Dane
x_a=-4
y_a=\frac{7}{2}=3.500000000000000
x_d=0
y_d=\frac{13}{2}=6.500000000000000
a=1
b=-3
c=\frac{29}{2}=14.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20392 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Prosta 21x-28y-164=0 jest styczną do okręgu o środku S=(3,-4).

Oblicz promień tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(-3,5), B=(1,17) i C=(-6,15), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30229 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach AB:3x+y-1=0, BC:7x+3y-27=0 i AC:x+3y-27=0 wyznaczają trójkąt ABC. Symetralna boku AB ma równanie x+by+c=0.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem okręgu opisanego na trójkącie ABC.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30282 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Parabola o równaniu y=ax^2+bx+c ma wierzchołek w punkcie C i przecina prostą o równaniu k:\ a_1x+b_1y+c_1=0 w punktach A=(x_a,y_a) i B=(x_b,y_b), które wraz z punktem C są wierzchołkami trójkąta ABC (odwrotnie do wskazówek zegara).

Podaj x_a+y_a.

Dane
a=-1
b=-8
c=-6
a_1=3
b_1=-1
c_1=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj x_b+y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
 Oblicz d(C, k).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm