Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. wycinkiem koła
C. czworokątem
D. trójkątem ostrokątnym
Zadanie 4.1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0
« Z koła opisanego nierównością
x^2-8x+y^2-8y+7\leqslant 0
wycięto kąt środkowy tego koła o mierze 3^{\circ}.
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%]
Punkty A=(x_a,y_a) i
C=(x_c,y_c) są przeciwległymi wierzchołkami
prostokąta ABCD, zaś wierzchołek
D tego prostokąta należy do prostej
y+c=0.
Wyznacz B=(x_b,y_b).
« Prosta k:x+2y+14=0 jest prostopadła do podstaw
AB i CD trapezu
równoramiennego ABCD, w którym
B=(10,-3) i C=(5,-3) oraz
D\in k (odwrotnie do ruchu wskazówek zegara). Prosta o równaniu y=ax+b jest osią
symetrii tego trapezu. Wyznacz wierzchołek A=(x_a,y_a) trapezu.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%]
Przez punkt (32,8) poprowadzono prostą, która wraz
z osiami układu tworzy trójkąt o polu powierzchni 512
i kąt rozwarty z dodatnią półosią osi Ox.
Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30284 ⋅ Poprawnie: 0/0