« W kwadracie o wierzchołkach ABCD punkty
K=(-5,-3) i L=(2,-6) są
środkami boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Punkty A=(-1,-2) i B=(1,0)
wyznaczają jedną z podstaw trapezu ABCD. Punkt
O=\left(-7,-\frac{7}{2}\right) jest środkiem drugiej podstawy
CD tego trapezu, przy czym
|CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i
D=(x_d,y_d).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pr-20370 ⋅ Poprawnie: 0/0
« Odcinek o długości 4 zawarty jest w prostej
o równaniu 3x-4y-22=0. Symetralna tego odcinka
przecięła oś Oy w punkcie
A=(0,2). Wyznacz współrzedne końców tego odcinka.
Podaj sumę odciętej i rzędnej tego punktu, który ma obie współrzędne całkowite.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj odciętą drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj rzędną drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pr-20407 ⋅ Poprawnie: 0/0
» Wysokość opuszczona z wierzchołka C trójkąta
równoramiennego ABC o podstawie
AB zawiera się w prostej
x+2y-15=0. Wiadomo, że A=(-8,-16)
i C=(-5,10).
Podstawa AB tego trójkata zawiera się w prostej
o równaniu ax+y+c=0.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30356 ⋅ Poprawnie: 0/0
Punkty A=(x_a,y_a),
B=(x_b,y_b) i C=(x_c,y_c),
gdzie x_c\leqslant 0 i
y_c\leqslant 0, są wierzchołkami trójkąta
równoramiennego o podstawie AB, opisanego
na okręgu o równaniu x^2+(y-b)^2=10.
Podaj x_b.
Dane
x_a=7 y_a=-4 b=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat