« Punkty o współrzędnych A=(3,4) i
C=(7,1) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
«« Punkt A=(6,-2) jest wierzchołkiem trójkąta
ABC, w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1].
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%]
Punkty A=(3,-3),
B=(8,3) i C=(6,6)
są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta,
która przecięła bok AC w punkcie D=(x_d,y_d).
Wysokość ta opisana jest wzorem BD:y=ax+b
Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa
do boku AB trójkąta.
Podaj b_1.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30315 ⋅ Poprawnie: 0/0
Dany jest trójkąt o wierzchołkach A=(-3,6),
B=(-2,0) i C=(-5,7).
Trójkąt A_1B_1C_1 jest obrazem trójkąta
ABC w jednokładności o środku
S=(-2,4) i skali k=-3.
Wyznacz współrzędne wszystkich wierzchołków trójkąta
A_1B_1C_1.
Podaj sumę odciętych wszystkich wierzchołków trójkąta
A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj sumę rzędnych wszystkich wierzchołków trójkąta
A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat