Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-10,-2) i C=(-5,10) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty A=(-8,-8) i B=(4,-3) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=(-7,-4) jest środkiem okręgu, a odległość punktu A=(23,12) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-6,-2) od prostej o równaniu 2x-y+5=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y-3=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x+2)^2+(y+6)^2=9 B. (x+3)^2+(y+7)^2=3
C. (x+3)^2+(y+6)^2=3 D. (x+3)^2+(y+7)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-1,-6).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20628 ⋅ Poprawnie: 5/19 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=0
y_a=-2
x_b=4
y_b=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20378 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Proste o równaniach a_1x+b_1y+c_1=0, a_2x+b_2y+c_2=0 i a_3x+b_3y+c_3=0 zawierają boki trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
a_1=3
b_1=-1
c_1=-8
a_2=2
b_2=1
c_2=8
a_3=1
b_3=1
c_3=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20392 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Prosta 21x-28y-164=0 jest styczną do okręgu o środku S=(3,-4).

Oblicz promień tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30215 ⋅ Poprawnie: 3/12 [25%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Prosta k:x+2y+20=0 jest prostopadła do podstaw AB i CD trapezu równoramiennego ABCD, w którym B=(6,-4) i C=(1,-4) oraz D\in k (odwrotnie do ruchu wskazówek zegara). Prosta o równaniu y=ax+b jest osią symetrii tego trapezu. Wyznacz wierzchołek A=(x_a,y_a) trapezu.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkty B=(2,2) i C=(2,-6) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-14=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30270 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
« Punkty A=(-4,-2) i C=(0,0) są wierzchołkami rombu o kącie ostrym 60^{\circ} przy wierzchołku B. Wyznacz B=(x_B,y_B) i D=(x_D,y_D) (odwrotnie do wskazówek zegara).

Podaj x_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj y_B.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm