Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(5,-3) i C=(-10,-11) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych A=\left(11,4\right) i B=\left(15,4\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(-10,26) i B=(-34,-22) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-10,7). Punkt P=(-6,7) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x+4)^2+(y-12)^2=3 z prostą określoną wzorem y=8+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Prosta y-12=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(-3,2) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest punkt B=(x_b,y_b). Przez punkt A=(x_a,y_a) przechodzi prosta k:y=ax+b taka, że d(B, k)=5.

Podaj najmniejsze możliwe b.

Dane
x_a=-3
y_a=4
x_b=4
y_b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Dany jest punkt B=(x_b,y_b). Przez punkt A=(x_a,y_a) przechodzi prosta k:y=ax+b taka, że d(B, k)=5.

Podaj największe możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(6,8), B=(13,1) i C=(14,4) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  8 pkt ⋅ Numer: pp-30204 ⋅ Poprawnie: 0/31 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Punkty C=(-6,16) i D=(-11,6) są dwoma kolejnymi wierzchołkami prostokąta ABCD, do boku AB którego należy punkt P=\left(-\frac{7}{2},9\right). Wyznacz wierzchołek A=(x_a,y_a) tego prostokąta (odwrotnie do ruchu wskazówek zegara).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przez punkt D i środek boku AB poprowadzono prostą o równaniu y=ax+b.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Prosta x-2y+9=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(-1,4) oraz C=(-2,12). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30277 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (4 pkt)
Do ramienia AC trójkąta równoramiennego należy punkt D=(-1,5). Podstawa AB tego trójkąta zawiera się w prostej x-y-6=0, natomiast ramię trójkąta BC w prostej x+2y-21=0. Oblicz długość wysokości trójkąta poprowadzonej na podstawę AB.

Podaj długość wysokości.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm