Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(-2,-5), L=(3,-10) i M=(3,-2) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(2,-2) i B=(4,-6) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=(2,-8) jest środkiem okręgu, a odległość punktu A=(18,4) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(11,-18) B. A=(-7,12)
C. A=(15,-25) D. A=(18,14)
Zadanie 5.  1 pkt ⋅ Numer: pr-10212 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz długość promienia okręgu określonego równaniem (x+y+9)^2+2(x+3)(-5-y)-3=0.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20604 ⋅ Poprawnie: 3/13 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Punkt C=(x_c,y_c) jest punktem przecięcia prostej x+y+c=0 z odcinkiem o końcach A=(x_a,y_a) i B=(x_b,y_b).

Podaj \frac{|AC|}{|CB|}.

Dane
x_a=-9
y_a=-5
x_b=-3
y_b=-1
c=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  3 pkt ⋅ Numer: pp-20618 ⋅ Poprawnie: 7/76 [9%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(-8,-11) i B=(0,-7), zaś C=(-6,-4) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20375 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dla jakich wartości parametru m prosta y=2x+m jest odległa od prostej y=2x-5 o 2\sqrt{5}?

Podaj największe możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20387 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Do okręgu o równaniu (x+5)^2+(y+1)^2=10 należą punkty M=(-4,-4) oraz N=(-2,-2). Punkt P tego okręgu spełnia warunek |MP|=|NP|. Wyznacz współrzędne punktu P.

Podaj najmniejszą z odciętych wszystkich znalezionych punktów P.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich znalezionych punktów P.
Odpowiedź:
y_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest punkt A=(-23,8) oraz prosta k o równaniu y=3x+13, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=0
y_a=-3
x_b=6
y_b=-1
a=2
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30316 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
Obrazem okręgu (x+7)^2+(y-2)^2=1 w jednokładności o środku S=(x_s,y_s) jest okrąg (x+1)^2+(y-5)^2=9.

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm