Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=-2x+8 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(4,-3) i B=(0,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. 1 B. 2
C. -2 D. -1
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-1,5) i B=(4,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Bok trójkąta zawiera się w prostej o równaniu 2x+3y-1=0. W trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (1,1). Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.

Wyznacz największą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10203 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W jednokładności o środku P=(2,5) i skali k=-2 obrazem okręgu o równaniu x^2+2x+y^2-12y+21=0 jest okrąg: określony wzorem:
Odpowiedzi:
A. (x+9)^2+(y-2)^2=64 B. (x-9)^2+(y+2)^2=64
C. (x-9)^2+(y+1)^2=61 D. (x-9)^2+(y+2)^2=60
Zadanie 6.  2 pkt ⋅ Numer: pp-20600 ⋅ Poprawnie: 17/135 [12%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=15. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=-2
y_a=4
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-6
y_A=0
x_B=2
y_B=-8
x_C=3
y_C=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(2, 7) jest punktem przecięcia przekątnych, a punkt A=(1,0) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20388 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Prosta 3x-4y-84=0 jest sieczną okręgu o środku S=(3,0) i przecina ten okrąg w punktach A i B takich, że |AB|=40.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » W prostokącie ABCD dane są: C=(5,2), \overrightarrow{AB}=[4,4] oraz prosta y=x-9, do której należy wierzchołek A tego prostokąta. Wyznacz równanie przekątnej AC:y=cx+d.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj d.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkt A=(7,11) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y+1=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y+8=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30280 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
Dany jest romb ABCD, w którym P_{ABCD}=40, A=(3,4) i C=(-9,0). Wyznacz B=(x_b,y_b) i D=(x_d,y_d).

Podaj x_b+y_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm