« Punkt o współrzędnych oraz punkty A=(-4,5),
B i C są wierzchołkami trójkąta równoramiennego
o podstawie AB, a punkt
D=(-2,6) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka C.
Wówczas punkt B ma współrzędne B=(x_B, y_B).
Wyznacz współrzędne x_B i y_B.
Odpowiedzi:
x_B
=
(wpisz liczbę całkowitą)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Bok trójkąta zawiera się w prostej o równaniu 2x+3y+31=0. W
trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (0,-9).
Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.
Wyznacz największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10221 ⋅ Poprawnie: 0/0
« Okręgi o równaniach x^2-4x+y^2+4y+4=0 oraz
(x)^2+(y-3)^2=4m^2
(m > 0) są styczne zewnętrznie. Wyznacz liczbę m
i zapisz wynik w najprostszej postaci \frac{a+b\sqrt{c}}{d}, gdzie
a,b,c,d\in\mathbb{Z}.
Podaj liczby a i c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0
Punkty A=(2,-7) i B=(4,-5)
wyznaczają jedną z podstaw trapezu ABCD. Punkt
O=\left(-4,-\frac{17}{2}\right) jest środkiem drugiej podstawy
CD tego trapezu, przy czym
|CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i
D=(x_d,y_d).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pr-20372 ⋅ Poprawnie: 0/0
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-m-2a)^2+(y+2-b)^2=20 i
(x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.
Podaj najmniejsze możliwe m.
Dane
a=-2 b=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Dla najmniejszej możliwej wartości m okręgi są
styczne w punkcie P=(x_p,y_p).
Podaj x_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
Podaj największe możliwe m, dla którego okręgi są
styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat