Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-2,-5) i F=(-5,3) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-2,-5) i B=(-5,3) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(-3,-7).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-7,-4). Punkt P=(-3,-4) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x+1)^2+(y+3)^2=3 z prostą określoną wzorem y=-7+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20596 ⋅ Poprawnie: 34/206 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Prosta x+b_1y+c_1=0 jest równoległa do prostej a_2x+b_2y+c_2=0 i przechodzi przez punkt A=(x_A,y_A).

Podaj c_1.

Dane
x_A=-1
y_A=-7
a_2=3
b_2=-4
c_2=-15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Prosta 4x-3y+12=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=11.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(1, 0) jest punktem przecięcia przekątnych, a punkt A=(0,-7) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20406 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są końcami odcinka AB, a punkt S=(x_s,y_s) środkiem jednokładności. Wyznacz A'=(x_{a'},y_{a'})=J^k_S(A) i B'=(x_{b'},y_{b'})=J^k_S(B).

Podaj \min(x_{a'},x_{b'}).

Dane
x_s=-4
y_s=-6
x_a=-10
y_a=-1
x_b=-2
y_b=-5
k=\frac{1}{2}=0.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj \max(y_{a'},y_{b'}).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt K=(0,4) jest środkiem odcinka PQ. Wyznacz równanie prostej k prostopadłej do odcinka PQ i przechodzącej przez punkt Q, wiedząc, że P=(-6,-8). Zapisz równanie prostej k w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Prosta x-2y-11=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(1,-5) oraz C=(0,3). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30349 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
» Dane są okręgi o równaniach x^2+y^2-14x-8y+56=0 i x^2+y^2-(2a+2)x+4y+(a+1)^2-77=0. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny.

Podaj najmniejsze możliwe a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Podaj największe możliwe a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj sumę wszystkich możliwych wartości a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm