» Punkty M=(0,2) i
N=(2,0) są punktami styczności okręgu i osi układu
współrzędnych, zaś prosta k: y=ax+b jest styczną
do tego okręgu w punkcie o odciętej równej 1
i tworzy z osią Ox kąt
\alpha\in(0^{\circ},90^{\circ}).
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%]
Punkt A=(11,11) jest wierzchołkiem trójkąta
ABC. Wysokość BM tego trójkąta
zawarta jest w prostej o równaniu x+2y-3=0, natomiast wysokość
CN zawarta jest w prostej o równaniu
3x+y-4=0. Wyznacz równanie boku
AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30356 ⋅ Poprawnie: 0/0
Punkty A=(x_a,y_a),
B=(x_b,y_b) i C=(x_c,y_c),
gdzie x_c\leqslant 0 i
y_c\leqslant 0, są wierzchołkami trójkąta
równoramiennego o podstawie AB, opisanego
na okręgu o równaniu x^2+(y-b)^2=10.
Podaj x_b.
Dane
x_a=7 y_a=1 b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat