Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(5,4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},2\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych A=\left(9\sqrt{3},3\right) i B=\left(13\sqrt{3},3\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym B. wycinkiem koła
C. czworokątem D. trójkątem ostrokątnym
Zadanie 4.  1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x^2+16x=y^2-64 opisuje na płaszczyźnie
Odpowiedzi:
A. prostą B. dwie proste
C. okrąg D. zbiór pusty
E. parabolę F. punkt
Zadanie 5.  1 pkt ⋅ Numer: pr-10205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Z koła opisanego nierównością x^2-8x+y^2-8y+7\leqslant 0 wycięto kąt środkowy tego koła o mierze 3^{\circ}. Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta y=-2x+9 jest styczną do okręgu o środku w punkcie S=(2,9). Wyznacz współrzędne punktu styczności P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(12,6) i B=(-4,-7) przecinają się w punkcie S=(0,-10).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20366 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(x_a,y_a) i C=(x_c,y_c) są przeciwległymi wierzchołkami prostokąta ABCD, zaś wierzchołek D tego prostokąta należy do prostej y+c=0. Wyznacz B=(x_b,y_b).

Podaj najmniejsze możliwe x_b.

Dane
x_a=10
y_a=\frac{13}{3}=4.333333333333333
x_c=-2
y_c=\frac{25}{3}=8.333333333333333
c=-\frac{1}{3}=-0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Prosta y=mx+n jest styczną do okręgu o równaniu x^2+y^2+ax+by+c=0 i tworzy z osią Ox kąt o mierze 120^{\circ}.

Podaj najmniejsze możliwe n.

Dane
a=-8
b=8
c=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe n.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30215 ⋅ Poprawnie: 3/12 [25%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Prosta k:x+2y+14=0 jest prostopadła do podstaw AB i CD trapezu równoramiennego ABCD, w którym B=(10,-3) i C=(5,-3) oraz D\in k (odwrotnie do ruchu wskazówek zegara). Prosta o równaniu y=ax+b jest osią symetrii tego trapezu. Wyznacz wierzchołek A=(x_a,y_a) trapezu.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Przez punkt (32,8) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 512 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30284 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta. Wiedząc, że P_{\triangle ABC}=12, oblicz x_c.

Podaj najmniejsze możliwe x_c.

Dane
x_a=5
y_a=-3
x_b=9
y_b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm