Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-4,5), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(-2,6) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-3 i x-y=9.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu -16x-3y-24=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Bok trójkąta zawiera się w prostej o równaniu 2x+3y+31=0. W trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (0,-9). Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.

Wyznacz największą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10221 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Okręgi o równaniach x^2-4x+y^2+4y+4=0 oraz (x)^2+(y-3)^2=4m^2 (m > 0) są styczne zewnętrznie. Wyznacz liczbę m i zapisz wynik w najprostszej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b,c,d\in\mathbb{Z}.

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu \left(m-\frac{5}{2}\right)x+\left(m+\frac{3}{2}\right)y-5=0 przecina prostą o równaniu (2m-3)x-(2m-5)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(2,-7) i B=(4,-5) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(-4,-\frac{17}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt P=(x_0,y_0) jest równooddalony od prostych y=x+b_1 i y=-7x-b_2.

Podaj najmniejsze możliwe x_0.

Dane
y_0=-5
b_1=0
b_2=18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe x_0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20407 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b), przy czym B=J^k_S(A). Wyznacz S=(x_s,y_s).

Podaj x_s.

Dane
x_a=1
y_a=-4
x_b=-5
y_b=-1
k=\frac{1}{3}=0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  6 pkt ⋅ Numer: pp-30194 ⋅ Poprawnie: 6/58 [10%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Trapez ABCD ma wierzchołki: A=(1,-7), B=(1,-2), C=(-2,-1) i D=(-17,-1). Wyznacz równanie prostej y=ax+b zawierającej najdłuższy bok tego trapezu.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Wyznacz odległość podstaw tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=-3
y_a=-4
x_b=3
y_b=-6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30308 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y+2-b)^2=20 i (x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.

Podaj najmniejsze możliwe m.

Dane
a=-2
b=-6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Dla najmniejszej możliwej wartości m okręgi są styczne w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
 Podaj największe możliwe m, dla którego okręgi są styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm