Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(2,3) i F=(-4,-4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
« Prosta k:x+2y-4=0 jest prostopadła do podstaw
AB i CD trapezu
równoramiennego ABCD, w którym
B=(10,6) i C=(5,6) oraz
D\in k (odwrotnie do ruchu wskazówek zegara). Prosta o równaniu y=ax+b jest osią
symetrii tego trapezu. Wyznacz wierzchołek A=(x_a,y_a) trapezu.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%]
Prosta k przechodzi przez punkty
B=(-1,3) i P=(9,15).
Prosta l:2x+y-19=0 przecina prostą
k w punkcie A=(x_a,y_a) i prostą o
równaniu y=3 w punkcie C=(x_c,3).
Oblicz x_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30281 ⋅ Poprawnie: 0/0