Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(3,1) i B=(6,-6).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{9}{2} B. -\frac{9}{2}
C. \frac{9}{4} D. -\frac{9}{4}
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(-8,1) i B=\left(-\frac{7}{2},1\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-6,0) i Q=\left(\frac{6}{5},\frac{8}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10214 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okręgi x^2+4x+y^2-14y+49=0 i (x-1)^2+(y-5)^2=1:
Odpowiedzi:
A. są rozłączne B. są styczne wewnętrznie
C. mają dokładnie dwa punkty wspólne D. są styczne zewnętrznie
Zadanie 6.  2 pkt ⋅ Numer: pp-20604 ⋅ Poprawnie: 3/13 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Punkt C=(x_c,y_c) jest punktem przecięcia prostej x+y+c=0 z odcinkiem o końcach A=(x_a,y_a) i B=(x_b,y_b).

Podaj \frac{|AC|}{|CB|}.

Dane
x_a=-5
y_a=2
x_b=1
y_b=6
c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(3,2), a środkiem okręgu wpisanego w ten trójkąt punkt S=(15,7).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20372 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt P=(x_0,y_0) jest równooddalony od prostych y=x+b_1 i y=-7x-b_2.

Podaj najmniejsze możliwe x_0.

Dane
y_0=2
b_1=4
b_2=-10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe x_0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2-2x+4y-20=0 względem punktu P=(-8,-1). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(2,1), B=(6,13) i C=(-1,11), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Punkty A=(1,4), B=(-3,7) i C=(-1,3) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30277 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (4 pkt)
Do ramienia AC trójkąta równoramiennego należy punkt D=(-1,5). Podstawa AB tego trójkąta zawiera się w prostej x-y-6=0, natomiast ramię trójkąta BC w prostej x+2y-21=0. Oblicz długość wysokości trójkąta poprowadzonej na podstawę AB.

Podaj długość wysokości.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm