« Dane są punkty P=(-9,-5) i
Q=\left(-\frac{9}{5},-\frac{17}{5}\right).
Punkt R=\left(x-2,y+3\right) dzieli odcinek
PQ w taki sposób, że
\frac{|PR|}{|RQ|}=\frac{1}{3}.
Wyznacz liczby x i y.
Odpowiedzi:
x
=
(wpisz liczbę zapisaną dziesiętnie)
y
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0
« Prosta 3x-4y+c_1=0 zawiera bok
CD kwadratu ABCD
(odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu
C jest mniejsza od odciętej punktu
D) o polu powierzchni
P_{\Box ABCD}=4. Wyznacz równanie prostej
AB:x+b_2y+c_2=0
Podaj b_2.
Dane
c_1=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pr-20391 ⋅ Poprawnie: 0/0
«« Punkt A=(9,-3) jest wierzchołkiem trójkąta
ABC, w którym dwie wysokości zawierają się w prostych
o równaniach 9x-6y-24=0 i
-11x-4y+12=0. Wyznacz równanie
y=ax+b boku BC tego
trójkąta.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%]