» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
» Trzy kolejne wierzchołki równoległoboku mają współrzędne:
A=(-1,-4), B=(3,0) i
C=(2,5). Bok CD tego równoległoboku
zawarty jest w prostej o równaniu CD:x+by+c=0.
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pr-20362 ⋅ Poprawnie: 0/0
«« Punkty A=(-3,-5) i B=(1,-7)
są kolejnymi wierzchołkami czworokąta ABCD
(odwrotnie do ruchu wskazówek zegara) wpisanego w okrąg, którego osią symetrii
jest prosta x-y-2=0.
Wyznacz C=(x_c,y_c) i
D=(x_d,y_d).
Podaj x_c+y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pr-20388 ⋅ Poprawnie: 0/0
«« Podstawy AB i CD
trapezu równoramiennego są prostopadłe do prostej
k:\frac{1}{2}x+y-1=0, do której należy wierzchołek
D tego trapezu. Wiedząc, że
B=(1,8) i C=(-4,8) wyznacz
współrzędne pozostałych wierzchołków A=(x_A,y_A) i
D=(x_D,y_D).
Podaj najmniejsze możliwe y_A.
Odpowiedź:
y_{A_{min}}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30223 ⋅ Poprawnie: 0/5 [0%]
Proste \sqrt{3}x+3y=3\sqrt{3} i
x=3 zawierają odpowiednio boki
AC i BC trójkąta
równobocznego ABC, w którym punkt
P=\left(\frac{9}{2},-\frac{3\sqrt{3}}{2}\right)
jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara).
Wyznacz punkt B=(x_b, y_b).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12.4 pkt ⋅ Numer: pr-30312 ⋅ Poprawnie: 0/0
Dane sa okręgi o_1:x^2+y^2+a_1x+b_1y+c_1=0 oraz
o_2:x^2+y^2+a_2x+b_2y+c_2=0. Wiadomo, że
J^{k}_{S}(o_1)=o_2. Wyznacz środek
S=(x_s,y_s) i skalę k
tej jednokładności.
Podaj ujemną skalę k.
Dane
a_1=-10 b_1=16 c_1=64 a_2=-58 b_2=34 c_2=730
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Podaj x_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj y_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
Podaj x_s wyznaczone dla skali ujemnej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat