Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=3x-1 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(3,-1) i B=(-3,-6) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (-1,-7) i (1,-7) należy do prostej o równaniu y+ax=-3-2a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-9,-5) i Q=\left(-\frac{9}{5},-\frac{17}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta określona wzorem y=m jest styczną do okręgu o równaniu (x-4)^2+(y-2)^2=49

Podaj najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+9)y+2m+17=0 przecina prostą (2m+9)x+y-m-\frac{11}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20620 ⋅ Poprawnie: 2/15 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Na trójkącie prostokątnym o wierzchołkach A=(-1,-3), B=(11,2) i C=(6,14) opisano okrąg, a na tym okręgu opisano trójkąt równoboczny.

Oblicz jego pole powierzchni.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20371 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta 3x-4y+c_1=0 zawiera bok CD kwadratu ABCD (odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu C jest mniejsza od odciętej punktu D) o polu powierzchni P_{\Box ABCD}=4. Wyznacz równanie prostej AB:x+b_2y+c_2=0

Podaj b_2.

Dane
c_1=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20391 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Wyznacz miarę kąta między stycznymi do okręgu x^2+y^2+8x-2y+12=0 poprowadzonymi przez punkt A=(-1,0).

Podaj miarę stopniową tego kąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt A=(9,-3) jest wierzchołkiem trójkąta ABC, w którym dwie wysokości zawierają się w prostych o równaniach 9x-6y-24=0 i -11x-4y+12=0. Wyznacz równanie y=ax+b boku BC tego trójkąta.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=1
y_a=-8
x_b=10
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30269 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Przez punkt A=(x_a,y_a) przechodzą proste y=a_1x+b_1 i y=a_2x+b_2, które z prostą o równaniu x-y+c=0 tworzą kąt o mierze 30^{\circ}.

Podaj \min(a_1,a_2).

Dane
x_a=3
y_a=-2
c=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj \max(a_1,a_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Podaj \min(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
 Podaj \max(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm