Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-04-03-dziedzina-funkcji-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 466/743 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\frac{x-1}{x^2} T/N : f(x)=\sqrt{-x-1}
Zadanie 2.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 283/473 [59%] Rozwiąż 
Podpunkt 2.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{3-\frac{3x-10}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 5
C. -5 D. 9
E. -3 F. +\infty
Zadanie 3.  2 pkt ⋅ Numer: pp-20771 ⋅ Poprawnie: 184/551 [33%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji: f(x)=\frac{\sqrt{x+11}}{\sqrt{18-x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Ile liczb całkowitych jedno lub dwucyfrowych należy do dziedziny tej funkcji.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm