Podgląd testu : lo2@zd-08-10-tr-podobne-pr
Zadanie 1. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{6} , przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=6 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
61 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
» Trójkąt na rysunku jest równoramienny o podstawie
AB , przy czym
|CD|=\frac{238}{13} oraz
|DB|=\frac{100}{13} :
Oblicz |AB| .
Odpowiedź:
Zadanie 5. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 5.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Rozwiąż