Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-08-10-tr-podobne-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 5\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle CAM|=|\sphericalangle ACN| B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle BAM|=|\sphericalangle ASN| D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 4.  2 pkt ⋅ Numer: pp-20724 ⋅ Poprawnie: 65/356 [18%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 «« Punkt M dzieli bok AB trójkąta na rysunku w stosunku 1:5. Ponadto |AC|=6 i |BC|=10:

Oblicz |BN|:|CN|.

Odpowiedź:
|BN|:|CN|=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20872 ⋅ Poprawnie: 15/31 [48%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Przekątne trapezu ABCD przecinają się w punkcie S, przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu. Prosta ta przecięła krótszą podstawę CD w punkcie E, a podstawę dłuższą AB w punkcie F tak, że |EF|=15, |SE|=3 i |EC|=4.

Oblicz długość przekątnej AC tego trapezu.

Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm