Podgląd testu : lo2@zd-08-10-tr-podobne-pr
Zadanie 1. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
W trapezie podstawy mają długość
4 i
15 , a wysokość ma długość
8 .
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
24 ,
a odcinek
BE ma długość
\frac{72}{5} .
Oblicz długość odcinka CD .
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Na ramieniu kąta ostrego o wierzchołku
A zaznaczono
odcinki
AB i
BC , na
drugim ramieniu odcinki
AD i
DE . Odcinki mają długości:
|AB|=5 ,
|BC|=\frac{49}{3} ,
|AD|=8 i
|DE|=\frac{16}{3} .
Wyznacz skalę podobieństwa trójkątów
ACD i
ABE .
Podaj skalę k\in(0,1] .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=2 :
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF .
Odpowiedź:
Podpunkt 5.2 (2 pkt)
Obwód trójkąta
SEF jest równy
2 . Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c} , gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż