Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-08-10-tr-podobne-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 W trapezie podstawy mają długość 4 i 12, a wysokość ma długość 5. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{3}, przy czym: P_{\triangle MCE}=1 i P_{\triangle NFB}=1:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle BCN| B. |\sphericalangle BSN|=|\sphericalangle CAM|
C. |\sphericalangle BAM|=|\sphericalangle ASN| D. |\sphericalangle CAM|=|\sphericalangle ACN|
Zadanie 4.  2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 » Trójkąt na rysunku jest równoramienny o podstawie AB, przy czym |CD|=\frac{161}{17} oraz |DB|=\frac{128}{17}:

Oblicz |AB|.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=10 i ramieniu |BC|=13:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm