Podgląd testu : lo2@zd-08-10-tr-podobne-pr
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{34}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
5:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Oblicz długość odcinka
x:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%] |
Rozwiąż |
Podpunkt 4.1 (2 pkt)
Zielony czworokąt na rysunku jest kwadratem oraz
|AC|=12 i
|BC|=37:
Jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
|
Zadanie 5. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] |
Rozwiąż |
Podpunkt 5.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M.
Oblicz |AM|.
Odpowiedź: