Podgląd testu : lo2@zd-08-10-tr-podobne-pr
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{15}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym:
P_{\triangle MCE}=4 i
P_{\triangle NFB}=5:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
24,
a odcinek
BE ma długość
\frac{72}{5}.
Oblicz długość odcinka AC.
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
|
Zadanie 4. 2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] |
Rozwiąż |
Podpunkt 4.1 (2 pkt)
» Trójkąt na rysunku jest równoramienny o podstawie
AB, przy czym
|CD|=\frac{238}{13} oraz
|DB|=\frac{100}{13}:
Oblicz |AB|.
Odpowiedź:
|
Zadanie 5. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] |
Rozwiąż |
Podpunkt 5.1 (2 pkt)
|AC|=17
|BC|=17
|AB|=30
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=30,
|AC|=17 i
|BC|=17.
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)