Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-08-10-tr-podobne-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 W trapezie podstawy mają długość 41 i 60, a wysokość ma długość 11. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{6}, przy czym: P_{\triangle MCE}=4 i P_{\triangle NFB}=4:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 » Do jednego z ramion kąta o wierzchołku O należą punkty A i B, a do drugiego ramienia kąta punkty C i D. Wiadomo, że AC\parallel BD oraz |AO|=9, |AC|=3 i |BD|=7.

Wyznacz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 |AC|=10 |BC|=10 |AB|=16 W trójkącie równoramiennym ABC dane są długości boków |AB|=16, |AC|=10 i |BC|=10.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm