Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-08-10-tr-podobne-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 W trapezie podstawy mają długość 1 i 4, a wysokość ma długość 3. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 37. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 » Trójkąt ABC jest prostokątny. Na boku AC tego trójkąta zbudowano kwadrat, natomiast bok AB przedłużono tak, że |\angle EHA|=90^{\circ}.

Wiedząc, że |BC|=8 oraz bok kwadratu ma długość 6 oblicz pole powierzchni trójkąta EHA.

Odpowiedź:
P_{\triangle EHA}=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Podstawa AB trójkąta ostrokątnego ma długość 16 cm, a wysokość opuszczona na tę podstawę ma długość 14 cm. W ten trójkąt wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB, a dwa - do boków AC i BC.

Oblicz długość boku tego kwadratu.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm