Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-08-10-tr-podobne-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości \frac{15}{2}\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym: P_{\triangle MCE}=4 i P_{\triangle NFB}=5:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 24, a odcinek BE ma długość \frac{72}{5}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 » Trójkąt na rysunku jest równoramienny o podstawie AB, przy czym |CD|=\frac{238}{13} oraz |DB|=\frac{100}{13}:

Oblicz |AB|.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 |AC|=17 |BC|=17 |AB|=30 W trójkącie równoramiennym ABC dane są długości boków |AB|=30, |AC|=17 i |BC|=17.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm