Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-09-01-okr-fun-tryg-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 9\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{2}{3}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 3.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pr-20028 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
« Dana jest równość \sin\alpha+\cos\alpha=\sqrt{2} .

Oblicz \sin\alpha \cdot \cos\alpha.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm