Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-10-01-wektory-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=\left(-3,\frac{9}{2}\right) jest środkiem odcinka AB, przy czym A=(-2,4), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 89/104 [85%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(15,-25) B. A=(11,-18)
C. A=(18,14) D. A=(-7,12)
Zadanie 3.  2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W trójkącie ABC dane są: A=(-6,0), C=(0,3). Punkt D jest środkiem boku AB, a \overrightarrow{CD}=[-2, -6].

Wierzchołek B tego trójkąta ma współrzędne B=(x_B, y_B). Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Punkt E=(x_E, y_E) jest środkiem boku BC tego trójkąta. Podaj y_E.
Odpowiedź:
y_E=
(wpisz dwie liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 29/108 [26%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=1
y_A=-8
x_B=-5
y_B=4
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm