Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-10-03-przes-wzdluz-oy-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x+2) B. g(x)=f(x)+2
C. g(x)=f(x-1) D. g(x)=f(x)-2
Zadanie 2.  1 pkt ⋅ Numer: pp-10775 ⋅ Poprawnie: 285/396 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-2) B. g(x)=f(x+2)
C. g(x)=f(x)-2 D. g(x)=f(x)+2
Zadanie 3.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{598}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,37). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,111\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -9,5\rangle, a zbiorem wartości przedział ZW_f=\langle -6,6\rangle. Funkcja g określona jest wzorem g(x)=f(x+7)-3. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm