Podgląd testu : lo2@zd-11-10-rown-nier-z-wart-param-pr
Zadanie 1.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20939
Podpunkt 1.1 (1 pkt)
Wyznacz wszystkie wartości parametru k\in\mathbb{R},
dla których rozwiązaniem układu równań
\begin{cases}
-2x+3y=4k+39 \\
3x-5y=-6k-57
\end{cases} jest para liczb (x,y) spełniająca
warunek |x\cdot y|\geqslant 10. Rozwiązanie
zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 2.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30835
Podpunkt 2.1 (2 pkt)
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m-6 i
g(x)=-4x+5m+42
przecinają się w punkcie o współrzednych (x,y) takim, że
|y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 3.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30837
Podpunkt 3.1 (1 pkt)
« Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-\frac{1}{2}x-\frac{m+1}{4}-2 oraz
g(x)=\frac{3}{2}x+\frac{2m-3}{2}-14 przecinają się w punkcie
należącym do wykresu funkcji określonej wzorem
h(x)=\frac{1}{2}x-4?
Podaj najmiejszą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat