Wyznacz wszystkie wartości parametru k\in\mathbb{R},
dla których rozwiązaniem układu równań
\begin{cases}
3x+7y=2k-43 \\
2x+5y=k-24
\end{cases} jest para liczb (x,y) spełniająca
warunek -7\leqslant x+y \lessdot 5. Rozwiązanie
zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2.4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m i
g(x)=-4x+5m+12
przecinają się w punkcie o współrzednych (x,y) takim, że
|y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 3.2 pkt ⋅ Numer: pr-30837 ⋅ Poprawnie: 0/0
« Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-\frac{1}{2}x-\frac{m-2}{4}+3 oraz
g(x)=\frac{3}{2}x+\frac{2m-9}{2}+7 przecinają się w punkcie
należącym do wykresu funkcji określonej wzorem
h(x)=\frac{1}{2}x+9?
Podaj najmiejszą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat