Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-02-postac-kanoniczna-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 183/325 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-10\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 2.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-10 x-30 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{2} B. -\infty
C. \frac{3}{4} D. -\frac{3}{4}
E. +\infty F. \frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 176/242 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-1(x+8)^2+2 B. y=1(x-4)^2-5
C. y=(2-x)^2+17 D. y=(x+5)^2-1
Zadanie 4.  2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Prosta x=2 jest osią symetrii paraboli f(x)=ax^2+bx+1, a najmniejsza wartość funkcji f jest równa -7. Wyznacz równanie tej funkcji w postaci ogólnej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=1
m=6
n=22
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 5.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm