Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-03-miejsce-zer-postac-ilo-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/686 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-2(x+6)(x+1).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+8)(x-6) jest przedział liczbowy \langle -196,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-8,6).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-8)(x-2). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-4)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,+\infty)
C. (-\infty,p\rangle D. (p,+\infty)
E. (p,q) F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=20
q=1000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm