Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-06-min-max-pr

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10978  
Podpunkt 1.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -15, -11\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+12\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20362  
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Wyznacz zbiór wartości funkcji g(x)=f(x-p)+q.

Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.

Dane
a=-3
b=6
c=1
p=5
q=-3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 3.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20356  
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=12
c=\frac{55}{3}=18.33333333333330
p=-5
q=-1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 4.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30080  
Podpunkt 4.1 (4 pkt)
» Największa wartość funkcji kwadratowej f(x)=a(x-5)^2-6 w przedziale \langle -1,1\rangle jest równa 10. Wyznacz najmniejszą wartość funkcji f w przedziale \langle -1,1\rangle.

Podaj tę wartość.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm