Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-08-rownania-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Równanie x^2-(k+3)x+4=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. (-\infty,p)\cup(q,+\infty) D. (p,+\infty)
E. (-\infty,p) F. (-\infty,p)\cap(q,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-5\right)\left(x^2+4x-4\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} y=-\frac{1}{2}x^2+12x-10 \\ y=-\frac{1}{2}x+2 \end{cases} .

Podaj największe możliwe x.

Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 3.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz punkty przecięcia paraboli określonej wzorem y=2x^2+29x+12 z prostą o równaniu y=-2.

Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 4.2 (1 pkt)
 Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm