Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-08-rownania-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Równanie x^2-(k+1)x+25=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \langle p,q\rangle
C. (-\infty,p)\cap(q,+\infty) D. (-\infty,p)
E. (p,+\infty) F. (p,q)
Podpunkt 1.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 240, a jedna z jego przyprostokątnych jest o 14 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 30/58 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Funkcja kwadratowa f(x)=18x^2+bx+\frac{25}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 310/431 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Rozwiąż równanie (4-x)\left(x^2+x-30\right)=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 4.2 (1 pkt)
 Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm