Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-09-nierownosci-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{1}{2}x+\frac{21}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-20409 ⋅ Poprawnie: 484/810 [59%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 « Rozwiąż nierówność (x-a)^2\geqslant(x-a)(2x+1) .

Podaj najmniejszą liczbę całkowitą, która spełnia tę nierówność.

Dane
a=8
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Rozwiąż nierówność f(x)-x\cdot g(x)\geqslant 0, gdzie f(x)=x^2+bx+c i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=3
c=-4
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 4.  4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których funkcja f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje wartości dodatnie dla każdego x rzeczywistego.

Podaj najmniejsze dodatnie m, które spełnia warunki zadania.

Dane
a=25
b=5
Odpowiedź:
min_{>0}= (wpisz liczbę całkowitą)
Podpunkt 4.2 (2 pkt)
 Podaj najmniejsze ujemne m, które nie spełnia warunków zadania.
Odpowiedź:
min_{<0}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm