Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-09-nierownosci-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Iloczyn (x+6)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-20392 ⋅ Poprawnie: 15/131 [11%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Rozwiąż nierówność ax^2+bx+c \geqslant 0 .

Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?

Dane
a=-1
b=\frac{7}{2}=3.50000000000000
c=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Rozwiąż nierówność (a-x)(bx-1) \geqslant 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia tę nierówność?

Dane
a=-2
b=3
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których funkcja f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje wartości dodatnie dla każdego x rzeczywistego.

Podaj najmniejsze dodatnie m, które spełnia warunki zadania.

Dane
a=4
b=2
Odpowiedź:
min_{>0}= (wpisz liczbę całkowitą)
Podpunkt 4.2 (2 pkt)
 Podaj najmniejsze ujemne m, które nie spełnia warunków zadania.
Odpowiedź:
min_{<0}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm