Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-09-nierownosci-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Iloczyn (x+3)(-6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
b=\frac{3}{2}=1.50000000000000
c=-1=-1.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=-\frac{9}{2}=-4.50000000000000
c=-\frac{81}{2}=-40.50000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 4.  2 pkt ⋅ Numer: pr-20067 ⋅ Poprawnie: 11/63 [17%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dla jakich wartości parametru m najmniejsza wartość funkcji g(x)=x^2+x+m^2-(2a+1)m+a^2+a+\frac{1}{4} należy do przedziału \langle 2,6\rangle?

Podaj najmniejsze takie m.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 4.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm