Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-13-rown-nier-wart-bezw-pr

Zadanie 1.  2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Rozwiąż równanie |x^2-16|+|x^2-36|=4x+a.

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=4
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Rozwiąż nierówność |x^2+3x+2|-|x-a|\leqslant 3.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań tej nierówności.

Dane
a=8
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 2.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz zbiór liczb, które nie spełniają nierówności (x+1-a)^2-|x-a|\geqslant 2x-2a+1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=8
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm