Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1
i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=15
oraz x_1\cdot x_2=2. Wiedząc, że
f(-1)=11 i a\in\mathbb{N_+}, wyznacz
wzór tej funkcji w postaci ogólnej.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 1.2 (1.4 pkt)
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 2.4 pkt ⋅ Numer: pr-30028 ⋅ Poprawnie: 0/0
« Suma dwóch różnych miejsc zerowych funkcji
f(x)=(a-m)x^2+(2b+n)x+c jest równa
4, a suma ich odwrotności jest równa
-\frac{1}{3}. Wiedząc, że
f(0)=-12 wyznacz a i
b.
Podaj a.
Dane
m=-1 n=-2
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 2.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat