Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-15-rown-nier-z-param-pr

Zadanie 1.  2 pkt ⋅ Numer: pr-20088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (2 pkt)
 Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=5
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 2.  4 pkt ⋅ Numer: pr-30051 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 « Dane jest równanie (x+3)\left[x^2+(p-a+1)x+(p-a-2)^2\right]=0 o niewiadomej x. Rozwiąż je dla p=a+4.

Podaj najmniejsze z rozwiązań.

Dane
a=4
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Wyznacz te wartości parametru p, dla których równanie to ma tylko jedno rozwiązanie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Dla ilu wartości całkowitych p z przedziału \langle -20, 20\rangle równanie to ma dokładnie jedno rozwiązanie?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m-9)x^2+(m-6)x+4=0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest mniejsza od 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 3.3 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm