Wyznacz te wartości parametru m, dla których
równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne
pierwiastki rzeczywiste spełniające warunek
|x_1-x_2| > 2x_1x_2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=-4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (2 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat