Dla jakich wartości parametru m\in\mathbb{R} suma
kwadratów dwóch różnych pierwiastków równania
x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od
sumy tych pierwiastków?
Podaj największe możliwe takie m.
Dane
a=-2
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 3.4 pkt ⋅ Numer: pr-30866 ⋅ Poprawnie: 0/0
Równanie kwadratowe x^2-(m-5)x+1=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (2 pkt)
Wyznacz te wszystkie wartości parametru m, dla których spełniona jest nierówność
\frac{1}{x_1^2}+\frac{1}{x_2^2} \geqslant 2m^2-17m+15.
Podaj najmniejsze i największe rozwiązanie tej nierówności.
Odpowiedzi:
m_{min}
=
(wpisz liczbę całkowitą)
m_{max}
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat