Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-15-rown-nier-z-param-pr

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20085  
Podpunkt 1.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są sinusem i cosinusem tego samego kąta ostrego?

Podaj największe takie m.

Dane
a=5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 2.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30054  
Podpunkt 2.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} iloczyn różnych pierwiastków równania x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0 jest o jeden mniejszy od sumy tych pierwiastków?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=6
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30041  
Podpunkt 3.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=6
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm