Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-15-rown-nier-z-param-pr

Zadanie 1.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 44/67 [65%] Rozwiąż 
Podpunkt 1.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 2.  4 pkt ⋅ Numer: pr-30046 ⋅ Poprawnie: 10/86 [11%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 « Równanie (m-a)x^2+2x-4m+5+4a=0 ma przynajmniej jedno rozwiązanie dodatnie. Wyznacz możliwe wartości parametru m.

Podaj najmniejsze możliwe m, które nie spełnia warunków tego zadania.

Dane
a=1
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 2.2 (2 pkt)
 Podaj największe możliwe m, które nie spełnia warunków tego zadania.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 3.  4 pkt ⋅ Numer: pr-30855 ⋅ Poprawnie: 3/8 [37%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Równanie x^2+(m+5)x+4m+12=0 ma dwa rozwiązania gdy parametr m należy do zbioru postaci (-\infty, p)\cup(a+b\sqrt{c}, +\infty), gdzie a,b,c\in\mathbb{Z} i c jest liczbą pierwszą.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Wyznacz te wartości parametru m, dla których równanie to ma dwa rozwiązania x_1 i x_2 takie, które spełniają warunek x_1^2+x_2^2=400.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 3.3 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm