Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-15-rown-nier-z-param-pr

Zadanie 1.  2 pkt ⋅ Numer: pr-20080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dana jest nierówność x^2-4(m+3)x-32m^2-192m-288 \lessdot 0 z parametrem m\in\mathbb{N_+} i m\geqslant 10. Funkcja g określona jest dla liczb naturalnych m\geqslant 10 i jej wartością dla liczby m jest największe z całkowitych rozwiązań podanej nierówności.
Funkcja g jest funkcją liniową określoną wzorem g(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 2.  4 pkt ⋅ Numer: pr-30053 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma odwrotności pierwiastków równania 8x^2-4(m-a)x-5m^2+(10a+10)m-5a^2-10a-8=0 wynosi -\frac{12}{23}.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=3
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  4 pkt ⋅ Numer: pr-30029 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których dwa różne pierwiastki x_1 i x_2 równania (2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność \frac{1}{x_1}+\frac{1}{x_2} > 1.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 3.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm