Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-16-rown-nier-wart-bezw-param-pr

Zadanie 1.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20106  
Podpunkt 1.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=2
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 1.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 2.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30067  
Podpunkt 2.1 (2 pkt)
 «« Prosta o równaniu 2x+amy-4=0 ma dokładnie dwa punkty wspólne z parabolą o równaniu y=-x^2+4x-4. Wyznacz możliwe wartości parametru m.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 2.2 (2 pkt)
 Podaj ilość tych przedziałów.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30070  
Podpunkt 3.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} suma i iloczyn dwóch różnych pierwiastków równania x^2+(2m+8)x+2m^2+9m+14=0 są liczbami przeciwnymi?

Podaj najmniejsze takie m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (2 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm