Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-16-rown-nier-wart-bezw-param-pr

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20107  
Podpunkt 1.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 2.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30051  
Podpunkt 2.1 (2 pkt)
 « Dane jest równanie (x+3)\left[x^2+(p-a+1)x+(p-a-2)^2\right]=0 o niewiadomej x. Rozwiąż je dla p=a+4.

Podaj najmniejsze z rozwiązań.

Dane
a=-3
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Wyznacz te wartości parametru p, dla których równanie to ma tylko jedno rozwiązanie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Dla ilu wartości całkowitych p z przedziału \langle -20, 20\rangle równanie to ma dokładnie jedno rozwiązanie?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30072  
Podpunkt 3.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których suma kwadratów dwóch różnych pierwiastków równania x^2+(m-2-a)x+2=0 jest większa od 2m^2+(16-4a)m+2a^2-16a+19.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=-4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 3.2 (2 pkt)
 Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm