Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-12-16-rown-nier-wart-bezw-param-pr

Zadanie 1.  3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=-1
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 1.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 2.  4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (2 pkt)
 « Dla jakich wartości parametru m równanie (m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  4 pkt ⋅ Numer: pr-30071 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (4 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma kwadratów dwóch różnych pierwiastków równania x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od sumy tych pierwiastków?

Podaj największe możliwe takie m.

Dane
a=-1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm