Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-04-katy-i-kola-pr

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10526  
Podpunkt 1.1 (1 pkt)
Dany jest okrąg o(O, r):

Oblicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10511  
Podpunkt 2.1 (1 pkt)
 Kąt \alpha na rysunku ma miarę 76^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11513  
Podpunkt 3.1 (1 pkt)
 (1 pkt) Punkt O jest środkiem okręgu na rysunku, a kąt \alpha ma miarę 44^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20204  
Podpunkt 4.1 (2 pkt)
 » Korzystając z danych na rysunku oblicz miarę stopniową kąta \beta:
Dane
\alpha=52^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20205  
Podpunkt 5.1 (1 pkt)
 » W okrąg wpisano trójkąt ABC, w którym |\sphericalangle A|=58^{\circ} oraz |\sphericalangle B|=65^{\circ}. Poprowadzono styczną do okręgu w punkcie C, która przecięła przedłużenie boku AB w punkcie D. Oblicz miary kątów trójkąta BDC.

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Podaj miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm