Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-07-okrag-wpisany-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-12124 ⋅ Poprawnie: 8/15 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Okrąg o środku w punkcie O jest wpisany w trójkąt ABC. Wiadomo, że |AB|=|AC| i |\sphericalangle BOC|=124^{\circ} (zobacz rysunek).

Miara stopniowa kąta BAC jest równa:

Odpowiedzi:
A. 70 B. 71
C. 68 D. 74
E. 66 F. 65
Zadanie 2.  2 pkt ⋅ Numer: pp-21013 ⋅ Poprawnie: 3/8 [37%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « W trójkącie równoramiennym ABC o podstawie AB dane są długości boków: |AC|=|BC|=26 i |AB|=20. W trójkąt ten wpisano okrąg.

Oblicz długości odcinków, na które dwusieczna kąta przy podstawie podzieliła ramię tego trójkąta.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Oblicz długości odcinków, na które punkt styczności okręgu z ramieniem trójkąta podzielił to ramię.
Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  2 pkt ⋅ Numer: pp-20721 ⋅ Poprawnie: 194/325 [59%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Punkt O jest środkiem okręgu:

Oblicz r+R.

Dane
|AC|=96
|AB|=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-21030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Promień okręgu opisanego na trójkącie prostokątnym ma długość 37. W trójkąt ten wpisano okrąg. Punkt styczności tego okręgu z przeciwprostokątną tego trójkąta znajduje się w odległości 23 od środka okręgu opisanego na tym trójkącie.

Oblicz długość promienia okręgu wpisanego w ten trójkąt.

Odpowiedź:
r= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm