Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-05-pole-troj-1-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 9\sqrt{3} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Przekątne równoległoboku o długości 8 i \frac{9}{2} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 17/38 [44%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 » We wnętrzu trójkąta równobocznego o boku długości 6\sqrt{2} zaznaczono dowolny punkt.

Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 10/46 [21%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Dwa boki trójkąta mają długość |AC|=7, |BC|=10, a kąt ACB ma miarę 120^{\circ}. Przez punkt C poprowadzono prostą prostopadłą do boku AC, która przecięła bok AB w punkcie D.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|DB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm