Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-05-pole-troj-1-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 32 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 48, a jego wysokość długość 32.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Jeden z kątów trójkąta równoramiennego ma miarę \alpha taką, że \cos\alpha=-\frac{1}{2} a pole powierzchni tego trójkąta jest równe 900.

Oblicz \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 4.  3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Dwa boki trójkąta mają długość |AC|=7, |BC|=11, a kąt ACB ma miarę 120^{\circ}. Przez punkt C poprowadzono prostą prostopadłą do boku AC, która przecięła bok AB w punkcie D.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|DB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm