Podgląd testu : lo2@zd-16-06-pole-troj-2-pr
|
Zadanie 1. 2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Pole powierzchni trójkąta równoramiennego jest równe
60, a tangens kąta
kąta przy podstawie jest równy
\frac{12}{5}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
24, a cosinus
kąta przy podstawie jest równy
\frac{12}{13}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
9 i
16, a jego
pole powierzchni jest równe
36\sqrt{3}.
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 3.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 3.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)