Podgląd testu : lo2@zd-16-06-pole-troj-2-pr
|
Zadanie 1. 2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%] |
Rozwiąż |
Podpunkt 1.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
6, a promień
okręgu wpisanego w ten trójkąt ma długość
1.
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najdłuższej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
60, a sinus
kąta przy podstawie jest równy
\frac{8}{17}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
11 i
15, a jego
pole powierzchni jest równe
\frac{165\sqrt{3}}{4}.
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 3.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 3.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)