Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-06-pole-troj-2-pr

Zadanie 1.  2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Pole powierzchni trójkąta równoramiennego jest równe 60, a tangens kąta kąta przy podstawie jest równy \frac{12}{5}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 24, a cosinus kąta przy podstawie jest równy \frac{12}{13}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 3.  4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 9 i 16, a jego pole powierzchni jest równe 36\sqrt{3}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 3.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 3.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm