Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-07-pola-tr-pod-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 2:13. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{65}{2} B. 10 i \frac{845}{2}
C. 5 i \frac{65}{2} D. 5 i \frac{169}{2}
Zadanie 2.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=40
|AB|=48
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=45:28, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=5:8. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm