Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-07-pola-tr-pod-pr

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10587  
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 8 cm2 i 90 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20757  
Podpunkt 2.1 (1 pkt)
 » Dany jest trójkąt równoramienny o podstawie AB:

Oblicz \sin\sphericalangle DAB.

Dane
k=6
Odpowiedź:
\sin\sphericalangle DAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 2.2 (1 pkt)
 Oblicz \frac{P_{\triangle AES}}{P_{\triangle SDC}} .
Odpowiedź:
\frac{P_{\triangle AES}}{P_{\triangle SDC}}=
(wpisz dwie liczby całkowite)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30003  
Podpunkt 3.1 (2 pkt)
 « Na bokach AB i AC trójkąta ABC obrano punkty odpowiednio M i L, takie, że |MB|=2|AM| oraz |LC|=3|AL|. Proste CM i BL przecięły się w punkcie S. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie K. Pole powierzchni trójkąta ABC jest równe 264. Oblicz pola powierzchni trójkątów AMS, MBS, ASL i LSC.

Podaj najmniejsze z tych pól.

Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (2 pkt)
 Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm