Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-16-07-pola-tr-pod-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 2:11. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 5 i \frac{55}{2} B. 1 i \frac{55}{2}
C. 5 i \frac{121}{2} D. 10 i \frac{605}{2}
Zadanie 2.  2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 « Dany jest trójkąt:

Oblicz |DE|.

Dane
|AC|=24
P_{\triangle DBE}:P_{ADEC}=106:278=0.38129496402878
Odpowiedź:
|DE|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pr-20947 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Wysokość CD trójkąta ABC ma długość 6 i dzieli bok AB tego trójkąta na odcinki o długości |AD|=2 i |DB|=8. Poprowadzono prostą równoległą do wysokości CD, która przecięła boki AB i BC odpowiednio w punktach E i F.

Wiedząc, że odcinek EF dzieli trójkąt ABC na dwie figury o równych polach powierzchni, oblicz jego długość.

Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm