Wielomian P(x)=x(-3x^2-10x-9)+p przy dzieleniu przez
dwumian Q(x)=x+1 daje resztę
0. Oblicz wartość współczynnika
p i wyznacz wszystkie pierwiastki wielomianu
P(x).
Podaj p.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=(m-10)x^3-(m)x^2-(m-7)x+m-3, który dzieli się
bez reszty przez x+1. Wyznacz te wartości
parametru m, dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (2 pkt)
Podaj największe możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat