Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-17-15-rownania-wielom-z-par-pr

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21017  
Podpunkt 1.1 (1 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (2x+3)\left[(m+9)x^2+(m+7)x-2\right]=0 ma mniej niż trzy rozwiązania.

Podaj najmniejsze i największe m spełniające warunki zadania.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21025  
Podpunkt 2.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m+1)x^3=x(2x-m-2) ma trzy rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Największy z końców tych przedziałów jest liczbą postaci \frac{a+\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z} i b jest liczbą pierwszą.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30848  
Podpunkt 3.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+2(m-6)x^2+4m^2-8m+4=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 3.2 (2 pkt)
 Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


Masz pytania? Napisz: k42195@poczta.fm