Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-19-01-okreslenie-ciagu-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-81 jest mniejszych od 1600?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=4
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=3
b=-15
c=-150
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=3
m=718
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 4.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm