Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-19-01-okreslenie-ciagu-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 225/382 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+11}{n+3}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=6
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 468/1092 [42%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=1
b=-5
c=-66
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy -3 oraz zachodzi równość c_{n+2}-c_{n+1}=n+2 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm