Podgląd testu : lo2@zd-23-06-ciaglosc-w-punkcie-pr
Zadanie 1.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-10353
Podpunkt 1.1 (1 pkt)
« Dana jest funkcja
h(x)=
\begin{cases}
m-|x-3|\text{, dla }x \lessdot -1\\
\frac{1}{2}(x^2+2mx-1)\text{, dla }x\geqslant -1
\end{cases}
,
gdzie m jest parametrem. Funkcja
h jest ciągła w punkcie
x=-1.
Wynika z tego, że m jest liczbą:
Odpowiedzi:
A. należącą do przedziału (0,2)
B. złożoną
C. całkowitą ujemną
D. pierwszą
Zadanie 2.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20844
Podpunkt 2.1 (2 pkt)
Dana jest funkcja
f(x)=
\begin{cases}
\frac{x(x-1)(x-2)}{x^2-3x+2} \text{, dla } x\in\mathbb{R}-\{1,2\} \\
1\text{, dla } x=1 \\
3\text{, dla } x=2
\end{cases}
.
Zbadaj ciągłość tej funkcji w punktach x=1 i
x=2.
Jeśli f jest ciągła w obu punktach wpisz
2, jeśli w jednym wpisz 1,
jeśli w żadnym wpisz 0.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20845
Podpunkt 3.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
\frac{x^2+a}{x-2} \text{, dla } x\neq 2 \\
b\text{, dla } x=2
\end{cases}
,
która jest ciągła w punkcie x=2.