Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-25-05-pole-troj-wiel-pr

Zadanie 1.  2 pkt ⋅ Numer: pr-20377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
x_a=3
y_a=-4
x_b=5
y_b=0
x_c=1
y_c=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  4 pkt ⋅ Numer: pr-30282 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Parabola o równaniu y=ax^2+bx+c ma wierzchołek w punkcie C i przecina prostą o równaniu k:\ a_1x+b_1y+c_1=0 w punktach A=(x_a,y_a) i B=(x_b,y_b), które wraz z punktem C są wierzchołkami trójkąta ABC (odwrotnie do wskazówek zegara).

Podaj x_a+y_a.

Dane
a=-1
b=4
c=-5
a_1=3
b_1=-1
c_1=-17
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Podaj x_b+y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.4 (1 pkt)
 Oblicz d(C, k).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  4 pkt ⋅ Numer: pr-30287 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
Dane są punkty A=(-3,1), B=(1,3), C=(-1,5) i D=(-4,7). Prosta k przechodzi przez punkt D oraz k\perp AB. Punkt P=(x_p,y_p) należy do prostej k i zachodzi równość pól P_{\triangle ABC}=P_{\triangle ABP}.

Podaj największe możliwe x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (2 pkt)
Podaj największe możliwe y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm