« Ustal, ile jest okręgów o promieniu 1,
które są styczne do prostej o równaniu y=-7
i okręgu o równaniu x^2+16x+y^2+6y+63=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20403
Podpunkt 2.1 (1 pkt)
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-m-2a)^2+(y-2m-2a-b)^2=1 i
(x-2-a)^2+(y+1-b)^2=16 są rozłączne zewnętrznie.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych
wszystkich końców tych przedziałów, które są liczbami.
Dane
a=-6 b=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30349
Podpunkt 3.1 (2 pkt)
» Dane są okręgi o równaniach
x^2+y^2-14x-8y+56=0 i
x^2+y^2-(2a+2)x+4y+(a+1)^2-77=0.
Wyznacz wszystkie wartości parametru a,
dla których te okręgi mają dokładnie jeden punkt wspólny.
Podaj najmniejsze możliwe a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
Podaj największe możliwe a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.3 (1 pkt)
Podaj sumę wszystkich możliwych wartości a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat