« Ustal, ile jest okręgów o promieniu 1,
które są styczne do prostej o równaniu y=3
i okręgu o równaniu x^2+12x+y^2-14y+75=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20403
Podpunkt 2.1 (1 pkt)
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-m-2a)^2+(y-2m-2a-b)^2=1 i
(x-2-a)^2+(y+1-b)^2=16 są rozłączne zewnętrznie.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych
wszystkich końców tych przedziałów, które są liczbami.
Dane
a=-4 b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30308
Podpunkt 3.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-m-2a)^2+(y+2-b)^2=20 i
(x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.
Podaj najmniejsze możliwe m.
Dane
a=-4 b=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
Dla najmniejszej możliwej wartości m okręgi są
styczne w punkcie P=(x_p,y_p).
Podaj x_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.3 (1 pkt)
Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.4 (1 pkt)
Podaj największe możliwe m, dla którego okręgi są
styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat